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Mosquito borne diseases pose a threat to human health worldwide. Disease risk

is primarily determined by presence and abundance of vector species. A better

understanding of mosquito diversity and abundance can direct improved vector control,

but this requires a combination of monitoring techniques that yield both rapid and

reliable information. Particularly improved larval detection is pivotal to move toward

more targeted management with less environmental impact. Current detection methods

rely strongly on manual labor and taxonomic expertise, which greatly limits the extent

to which these methodologies can be employed. As such, insight in the efficiency of

novel, high-throughput vs. traditional sampling techniques is required. We compared the

effectiveness of a recently developed environmental DNA (eDNA) approach on water and

sediment samples with other commonly used sampling techniques (“dipping” for larvae

and adult trapping) in a field study on three Caribbean islands. All sampling methods were

employed across a range of ecologically contrasting sites. Species identification was

performed both morphologically and molecularly using an in-house developed reference

database supplemented with sequences fromBOLD andGenBank. Our analysis of water

samples from 39 sites shows that eDNA sampling can be more reliable than dipping,

yields a higher within-sample richness and produces a subset of the adult community

in all sampled water types. Furthermore, for both adults and larvae, our identifications

showed complete overlap between morphological and molecular approaches in 133

out of 134 samples. Overall, results from this study provide evidence that both our

eDNA-based detection of larvae and our DNA-based identification of larvae and adults

present methods that are, although more expensive, as reliable, and for some species

even more reliable than the currently used methods. Additionally, our results highlight

that a DNA approach can be used to identify larvae of early developmental stages, which

generally lack important morphological characteristics. As such it allows for development

of efficient disease control strategies, verification of management effectiveness and

monitoring of population dynamics.

Keywords: Aedes aegypti, biomonitoring, Culex quinquefasciatus, Dutch Leeward Isles, eDNA, mosquito

communities, mosquitoes, vector-borne diseases
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INTRODUCTION

Mosquitoes (Culicidae) present a major risk for human health
worldwide (Leslie et al., 2017). They cause hundreds of thousands
of deaths annually due to their role as vector for vector-borne
diseases (VBD) such as chikungunya, dengue, malaria, yellow
fever, and zika (WHO, 2017b). Even though our understanding
of these diseases is growing, case incidences are increasing (Risks
et al., 2012; WHO, 2017a). Occurrence of VBD is limited by the
presence, abundance, and dispersal of their respective vectors
(Schaffner and Mathis, 2014). Due to land use change, climate
change and increased global trade and travel (Lambin et al., 2001;
Patz et al., 2004; Risks et al., 2012), distributions of vector species,
especially those of exotic species such as Aedes aegyti and Aedes
albopictus are shifting across all continents (Petric et al., 2014).
This highlights the importance of monitoring tools that can
provide reliable, high-throughput and up-to-date information on
species distributions, both for larvae and adults, especially for
surveillance near hotspots of travel and trade, such as harbors
and airports.

Traditionally, methodologies used for studying the
distribution of mosquito larvae and adults rely strongly
on morphological identification. This, combined with
methodological challenges, greatly limits the extent to which
these techniques can be employed. For example, to identify
localities where vector control is needed, presence and, ideally,
larval habitats of (disease-vectoring) mosquitoes have to be
confirmed. Larval identification methods play a crucial role
in the detection of these larval habitats because mosquito
populations are generally limited by the availability of suitable
habitats (Frank et al., 1988; Rejmánková et al., 2013). The
detection is usually performed using a “dipping” method
(hereafter referred to as dipping), in which larvae and pupa are
physically caught and identified (van der Berg and Schaffner,
2016). In doing so, larval habitats can be specifically targeted
with mosquito control measures, thus minimizing the impact on
the environment. However, dipping can be cumbersome, since
the larvae and pupa dive upon visual and auditory disturbance
(Becker et al., 2013). Depending on the species, the dive can
last up to several minutes, increasing the required sampling
effort and possibly decreasing detection probability. In addition
to these methodological challenges, samples collected using
dipping are typically identified morphologically, which is
prone to unresolved or misidentification due to phenotypic
plasticity and cryptic species (Jerde et al., 2011; Deiner et al.,
2013; Fišer Pečnikar and Buzan, 2014; Mächler et al., 2014).
Some characteristics, for example, are only apparent at a certain
life stage or gender (Murugan et al., 2016; van der Berg and
Schaffner, 2016). This is especially true for culicid larvae,
since most characteristics are only visible on the fourth instar
(Becker et al., 2013; ECDC, 2014). Likewise, adult sampling
is widely used to detect the mosquito species community at a
given locality, and is generally carried out using a variety of
trapping methods (Becker et al., 2013). Adult sampling may
yield higher diversity, since it is independent of larval habitat
preference. After trapping, all individuals need to be collected at
dawn, thus limiting the number of trapping sites. Afterwards,

individuals are sorted to species. In general, identification is
performed using morphological keys. This method is therefore
almost entirely dependent on taxonomic expertise, which is
becoming increasingly difficult to get by Mächler et al. (2014),
particularly in the highly biodiverse ecosystems of the tropics.
Furthermore (recent), identification keys based on morphology
are not available for many regions, with a particular lack of keys
in tropical areas where mosquito diversity and mosquito borne
disease risk are highest (Rawlins et al., 2008; WHO, 2017b).

Molecular approaches based on environmental DNA (DNA
that organisms shed into their environment, hereafter eDNA)
or DNA could comprise valuable additions or even alternatives
for both larval and adult morphological methods. For larval
stages, an eDNA approach can have three main benefits. First,
it can greatly reduce the time needed for species collection
(Herder et al., 2014) and is non-invasive in the sense that it
does not harm the species under investigation (Thomsen and
Willerslev, 2015). Second, larvae can—in theory—be detected
after adult emergence (Barnes et al., 2014; Schneider et al., 2016)
thus allowing for repeated sampling with larger time intervals.
Third, detection rates for eDNA may be higher than those of
traditional techniques, which has already been observed for taxa
such as fishes, amphibians and gastropods (Thomsen et al., 2012;
Goldberg et al., 2013; Pilliod et al., 2013; Mächler et al., 2014).
A growing number of eDNA studies target macro-invertebrates
(Roussel et al., 2015), from which the necessity of eDNA
collection based on target species ecology can be inferred (Deiner
et al., 2015). Sediment dwelling organisms such as amphipods, for
instance, tend to be hard to detect in aquatic samples (Mächler
et al., 2014). Despite difficulties with other invertebrate taxa, we
expect that eDNA of mosquito larvae can be reliably detected,
since these larvae live and molt near the water surface (Rueda,
2008), which can be expected to result in a local accumulation of
eDNA, thus allowing for successful eDNA collection (Schneider
et al., 2016). For adult mosquitoes, molecular identification
would also represent a valuable methodological addition,
especially if employed in combination with high-throughput
sequencing (also known as next-gen sequencing, hereafter NGS).
All individuals within a sample (hereafter bulk sample) can then
be analyzed simultaneously, allowing for rapid identification of
large numbers of specimens, rendering it less labor intensive and
time consuming (Batovska et al., 2016). Moreover, it holds the
promise to be less prone to identification mistakes and might
even result in a more resolved identification (Fišer Pečnikar and
Buzan, 2014), which is especially important for vector control.

However, there are a number of caveats when it comes to
using molecular identification. First of all, molecular methods
currently remain more costly than traditional methods and
may therefore prove to be less readily available for routine
surveys. Also, environmental samples in particular are known
to contain components that hinder DNA amplification, such
as humic substances and polysaccharides (Herder et al., 2014).
The amount and variety and therefore the influence of these
PCR inhibitors varies across the different types of larval habitats
(Wilson, 1997; Schrader et al., 2012). Also, the larval habitats
vary in their abiotic properties (Becker et al., 2013), which
influences DNA degradation (Strickler et al., 2015). Species in
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certain water body types may therefore be harder to detect. A
better understanding of the factors that determine the reliability
and usability of eDNA collection and molecular identification is
therefore required to implement these techniques for adequate
mosquito vector monitoring.

The aim of this research is threefold: (i) to explore whether
eDNA-based assessments of larval communities in water bodies
match with the morphological analysis, thus testing the reliability
of eDNA-based assessments of larval mosquito communities; (ii)
to explore whether DNA-based identification of adult and larvae
matches the morphological identifications, thus determining
the usability of molecular identification for high-throughput
assessments; (iii) to determine whether DNA-based methods can
be used across ecologically contrasting habitats by comparing
relationships between larval mosquito community composition,
and abiotic properties of the various habitats, using both
traditional and DNA-based methods.

To this end, a comparative analysis was carried out to
determine the effectiveness of eDNA sampling and molecular
identification using a recently developed culicid-specific primer
(Krol et al., 2019) vs. traditional sampling and morphological
identification for detection of larval, pupal, and adult culicids.We
used the mosquito communities of the Caribbean islands Saba,
St. Eustatius and St. Maarten (Lesser Antilles) as a study system.
These islands are ecologically diverse and have a relatively limited
and relatively well-known species pool (Van der Kuyp, 1954), and
therefore provide an ideal study system.

MATERIALS AND METHODS

All field work was conducted during April 2018 on the islands
of St. Eustatius, St. Maarten and Saba. Samples of adults, larvae
and eDNA were collected in the period of a single week for
each of the three islands. For adults, a list of optimal trapping
sites was gathered by consulting the local vector control units for
knowledge on known larval habitats on each of the three islands.
From this list 10 trapping sites per island were selected which
cover all available habitats including the urban environment.
Only for larvae, aquatic eDNA samples and sedimentary eDNA
samples were collected; every water body that was encountered
during intensive surveys on the island was included as a sample
site. For each water body, we recorded the coordinates (Figure 1)
and type (see below). Aquatic eDNA was collected at 36, 17,
and 19 sites on St. Eustatius, Saba, and St. Maarten, respectively.
Sedimentary eDNA was collected at 6 sites on St. Maarten only.

Traditional Sampling of Adults, Larvae,
and Pupae
Adult Mosquitoes

Samples of adult mosquitoes, consisting of all individuals caught
per trapping method, were collected using Mosquito magnets
(Executive), BG-sentinels v2, resting traps, sticky traps, and
human-landing catches at each of the sites (Figure 1). The
Mosquito magnets were deployed at ground level because the
high spatial coverage of the Mosquito magnet is designed
to capture mosquitoes from the entire air column, thereby

overcoming the stratifying effects of possible host preference
(Andreadis and Armstrong, 2007; Harbach, 2007). Placement
was∼10m leeward of larval habitats with a minimum distance of
100 meters between the trapping sites to allow for optimal spatial
coverage (Harrington et al., 2005; Epopa et al., 2017; Medeiros
et al., 2017). A similar approach was used for the BG-sentinel
and resting trap (Burkett-Cadena, 2011). Sample collection
encompassed 3 days to yield a representable composition of the
mosquito community (Gorsich et al., pers. comm.). To minimize
sampling bias which may arise from species-specific variation
in lifestyle (as a result of e.g., varying flight times or feeding
activity; Harbach, 2007; Panella et al., 2016), adult mosquitoes
were collected during 24 h of continuous trapping. All traps were
emptied between 5.30 and 7.30 a.m. to prevent the mosquitoes
from drying out, which hinders morphological identification.
BG-sentinels were baited with BG-lure and a sugar-yeast mixture
of which the latter acted as CO2 source as alternative for dry-
ice which proved unobtainable on all of the islands. Mosquito
magnets were baited with octenol and CO2 using lure and
propane combustion, respectively. The latter also served as an
electricity source. The use of CO2 and bait is expected to increase
yield (Bhalala and Arias, 2009; Hoel et al., 2009; Kweka et al.,
2013). All stationary traps were placed out of direct sunlight
to prevent captured mosquitoes from drying out. Traps were
shielded from rain and wind to prevent damage and optimize
the efficiency of the octenol and CO2. Human landing catches
(ECDC, 2014) were performed each day at dusk.

Larvae and Pupae

Larvae and pupae were collected by dipping (Becker et al., 2013)
in stagnant water bodies such as cisterns, ponds, rock pools,
wells, tree holes, pots, and plant containers such as bromeliads.
To test how well dipping and eDNA collection perform across a
variety of conditions, whilst tackling habitat preference (Becker
et al., 2013; Petric et al., 2014), we made an attempt to sample
as many different types of water bodies as possible (Harbach,
2007; ECDC, 2014; Richardson and Richardson, 2014; Lebl et al.,
2015). The risk of cross contamination was negligible because
all sampling locations were spatially separated. Dipping was
performed with either a 60mm diameter sieve, 70 × 50mm
aquarium net or 25mL pipet, depending on the accessibility
of the water body. The larvae and pupae were stored in
96% ethanol. Sticky traps were used after dipping, just above
surface level of water bodies that still carried water after
sample collection.

eDNA-Based Sampling
Water Samples

Independent of whether larvae and/or pupae were found, aquatic
eDNA was collected at all larval sites where >10mL water
could be sampled for a total of 32, 18, and 18 samples for
St. Eustatius, Saba, and St. Maarten, respectively. Samples were
taken by collecting surface water in steps of 25mL with a
PIPETBOY (Integra Bioscience) without agitating the water.
Based on a pilot study, a maximum volume of 200mL was
used to prevent the filters from clogging. Because volume
and subsample count varied between sites and are known
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FIGURE 1 | Overview of all sampling sites at each of the three sampled Caribbean islands: St. Maarten (top), Saba (bottom left), and St. Eustatius (bottom right).

White symbols indicate sites where adults were sampled, black symbols indicate sites where larval (dipping) and eDNA (water and sediment) samples were collected.

Dashed lines indicate that the distance between islands is not to scale (Esri, 2011).

to influence detection probabilities (Turner et al., 2014), we
recorded both parameters at each of the sites. The samples
were stored at 4◦C until further processing. Within 24 h after
collection samples were filtered with a vacuum pump using a
Sartorius polycarbonate filter holder and 47mm 0.2µm filter
membrane (Sartorius-stedim). Filters were stored in 2mL micro
centrifuge tubes containing 900 µL Longmire solution (0.1M
TRIS, 0.1M EDTA, 0.5% SDS, 10mM NaCl; Williams et al.,
2016) to prevent DNA degradation during storage and transport
at ambient temperatures (Renshaw et al., 2015; Williams et al.,
2016). After each sample, filter holders and pipets were cleaned
by rinsing with bleach (2x) and water (3x) to prevent cross-
contamination of samples by destroying the residual DNA. On
every island, a negative control (tap water) was filtered and
processed as if it was a sample to test for possible contamination
between samples.

Sediment Samples

The water bodies were, whenever possible, sampled for
sedimentary eDNA to allow for the collection of settled eDNA
(Turner et al., 2014). Sediment collection consisted of filling
a 15mL falcon tube up to the 10mL mark (equal to roughly
14 gr.) by scraping the entire depth profile perpendicular to
the waterline in a transect ranging from 10 cm under water
up to the waterline for 4–6 sub samples at 0.5m distance
from each other. Hereafter all subsamples per sampling location
were merged. To each of the samples 5mL of CTAB buffer
was added and subsequently mixed by carefully inverting 2–3
times to prevent DNA degradation during storage and transport

(Renshaw et al., 2015). The sediment samples were stored at 4◦C
until further processing.

Morphological Identification of Larvae and
Adults
All larvae and adults from each traditional sample were
morphologically identified. Identification was primarily
conducted using keys and species descriptions by Belkin et al.
(1970), Darsie et al. (2010), and Van der Kuyp (1954).

Construction of DNA Reference Database
An in-house developed reference database for the Cytochrome
oxidase I gene (COI) of morphologically identified species
was constructed (Supplement 2 in Supplementary Material)
to reduce the probability of misidentifications (Virgilio et al.,
2010). This database contains species that were likely to occur
on Saba, St. Eustatius and St. Maarten, based on the data from
“mosquitocatalog.org,” but had insufficient public material
on BOLD and GBIF. The dataset was constructed by Sanger
sequencing with the primer set jgLCO1490 and jgHCO2198
(Geller et al., 2013). Sequences were obtained by barcoding
specimens from the personal collection of Francis Schaffner.
The sequences included the species Aedes aegypti, Aedes busckii,
Aedes serratus, Aedes taeniorhynchus, Aedes tentius, Aedes
tortilis, Anopheles aquasalis, Culex atratus, Culex bisulcatus,
Culex idottus, Culex nigripalpus, Culex quinquefasciatus,
Deinocerites magnus, Haemagogus chrysochlorus, Haemagogus
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dyrisolchloratus, Isotomyia perturbans, Limatus durhami, and
Psorophora ferox.

DNA Extraction, Amplification, and
Sequencing
For each traditional sample containing specimens, either
adults or larvae, the right mid leg for adults or the proximal
three segments of the larval abdomen were used for DNA
extraction, so that the quality of the voucher specimen for
morphological analysis was retained. The legs or abdominal
segments of all specimens at a given location were merged per
sample (hereafter called bulk sample), ground and DNA was
extracted conform the Kingfisher’s “Machery_Nagel_Tissue_96
KingFisher Flex” protocol for the NucleoMag 96
Tissue kit.

eDNA of water samples was extracted and purified using
a PCI protocol developed by Renshaw et al. (2015) followed
by a DNeasy blood and tissue kit extraction as clean-
up (Supplement 3 in Supplementary Material). This method
combines the higher yield of the PCI (Deiner et al., 2015;
Goldberg et al., 2016) and the blood and tissue kit inhibitor
removal (Zhou et al., 1991) whilst being able to store it at
room temperature (Renshaw et al., 2015). eDNA of sediment
samples was extracted and purified using the FastDNA soil kit
developed by MP Biomedicals. Verification of the quality and
quantity of the DNA extracts was performed with a Trinean
dropsense 96.

For both bulk samples and eDNA samples, DNA amplification
of mini barcodes (154 bp) within the COI region was
performed with IonCode labeled culicid primers developed in
an earlier study: F: 5′-GGRKCHGGDACWGGDTGAAC-3′; R:
5′-RGATCAWACAAATAAAGGTAWTCGATC-3′ (Krol et al.,
2019). Each PCR mixture (20 µL) contained 1.5 µL of DNA
solution with 1 µL 10 pM forward and reverse primer in
10 µL 2x environmental master mix (Taqman environmental
mix 2.0, Applied Biosystems, Foster City, CA, USA). PCR
reactions were performed under thermocycler conditions of
10min at 95◦C, and 40 cycles of 15 s at 95oC, 30 s at
52oC, 40 s at 72oC and 5m at 72oC in a Bio-rad C1000
touchTM system.

After the PCR, product presence was visually confirmed
by gelelectroforesis on E-gel (Invirtogen, Foster City, CA,
USA). Samples with product were cleaned by mixing with
18 µL Nucleomag B-beads (Macherey-nagel GmbH & Co,
Düren, Germany), incubated for 5m and placing it on a
magnetic rack. Supernatant was removed and the samples
were washed two times with 100 µL 80% ethanol and left to
air-dry. Thereafter, the samples were taken off the magnetic
rack and resuspended in 25 µL Milli-Q. Subsequently DNA
concentrations were quantified with the Qiagen© Qiaxcel and
pooled equimolarly at 26 nM/L with the Qiagility. The pool
was diluted to 30 pM/L and subsequent analysis was done
conform the IonTorrentTM IonPGMTM Hi-QTM handbook using
the BioAnalyzer, Ion OneTouchTM 2 and Iontorrent on a 318TM

chip. All 97 bulk samples contained PCR product and were
used for the Iontorrent run. Forty seven of 68 water samples

and 6 of 10 sediment samples contained PCR product and
were used for the Iontorrent run. Samples with undetectable
amounts of DNA were not used to prevent dilution of the
other samples.

Bioinformatics and Statistical Analysis
Initial assessment of the NGS data was performed with the
software packages FastQC v0.11.7 (Andrews, 2010), cutadapt
v1.16 (Martin, 2011), prinseq 0.20.4 (Magoč and Salzberg, 2011),
FLASH v1.2.11 (Putra et al., 2015), Unoise v10.0.240 (Edgar,
2016), and Vsearch v2.4.3 (Rognes et al., 2016) integrated in the
Naturalis Galaxy pipeline.

As in previous studies NGS data were filtered by clipping the
primers and, in case of low data quality, by trimming the 3’side of
the sequences based on a lower phred-score cut-off of 20 (Deiner
et al., 2017). Operational taxonomic units (hereafter OTUs) were
after removal of singletons, clustered with both Unoise (alpha
1.5) and Vsearch (threshold: 97% similarity). OTUs with without
a read depth of 0.001% of the total amount of reads within at
least one sample were discarded to remove artifactual sequences
(Alberdi et al., 2018).

Both Unoise and Vsearch clustering algorithms were used
since they were expected to yield dissimilar results due to
the differences in clustering approach. Also, the authors of
Unoise state that Unoise clustering with Iontorrent data
may result in inflated abundance of incorrect reads due to
sensitivity to barcoding errors. However, no difference in
community per sample was detected between the two clustering
methods for Bray-curtis similarity on presence-absence data
using Past v3 (Figure S1 in Supplementary Material; one-
way ANOSIM, R 0.008531, p > 0.1). To reduce required
computational power induced by the amount of OTUs, Unoise
clustering, which resulted in far fewer OTUs, was used for
further analysis.

The optimal Unoise alpha value was determined from the
values 0.5, 1.0, 1.5, 2.0, and 3.0 by manually confirming the most
parsimonious phylogeny whilst maintaining all Culicomorpha
using the neighbor-joining phylogeny (Datasheet S3 in
Supplementary Material; ClustalW 2.1) and lowest common
ancestor analysis (LCA) (Supplement 5 in Supplementary
Material; Megan 6.12.3). LCA was performed using the
parameters: min score: 170; max expected: 0.01; min percent
identity: 70; top percent: 5; min support percent: 0.0 (off); min
support: 1.

Alignment was performed against the internally developed
reference database, or if no reference ID > 95% is available
against BOLD or thereafter Genbank. If no hit with ID > 95%
was found, the optimal hit from the three databases was used.
Genbank is used as last resort, since it is known to include
misidentifications (Meier et al., 2006).

Hits >98% were accepted as species level identifications
and hits >95% as genus level identifications since a
culicid specific primer is used (Alberdi et al., 2018). Five
Misidentifications were corrected for by manually comparing
all species level identifications of species found outside their
expected distribution.
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The OTU table was transformed into a presence-absence
matrix prior to the analysis, since the amount of reads
cannot reliably be used as a proxy for biomass within
species (Herder et al., 2014) and even more so across species
(Goldberg et al., 2016).

Because no mosquitoes were caught using the sticky
traps and resting traps, these methods were excluded from
further analysis. A total species list was composed using
data from the Mosquito Magnet, BG-sentinel, human landing
catches, dipping samples, eDNA water samples and eDNA
sediment samples.

Differences in larval detections between dipping and eDNA
samples and between different water body types were tested
using a one-way ANOSIM: (9,999 permutations) and visualized
with Non-metric multidimensional scaling (nMDS) plot using
Bray-Curtis similarity in Past v3. The differences were further
explored with binomial GLM with log-odds link function, to
test for interaction effects between identification method and
water body type and (interaction) effects of sample volume and
subsample count (Datasheet 2 in Supplementary Material).

Data from the Mosquito Magnet and BG-sentinel was
highly unbalanced due to trap failure. Therefore, presence-
absence counts of only the Mosquito Magnet, BG-sentinel
samples, and dipping samples were used to calculate
detection probabilities both overall and per species comparing
morphological and molecular determinations via χ

2-test using R
version 1.1.383 (Datasheet 2 in Supplementary Material).

RESULTS

From all molecular data, 35 of the 255 OTUs were identified to
species level. These mainly included species within the family
Culicidae, but also other taxa in the Diptera order, and some taxa
within the order Crustacea (Supplement 5 in Supplementary
Material). The OTUs identified as Culicidae clustered in
accordance with the presumed phylogeny (Datasheet 3 in
Supplementary Material; Harbach, 2007), indicating that the
species level identification at 98% identity was correct. The
OTUs within the infraorder Culicomorpha were used for
further analysis (Datasheet 1 in Supplementary Material).
None of the negative controls contained culicid DNA, thus
indicating that no cross contamination occurred during
sample processing.

Species Detected by Morphological
Analysis
Morphological analysis of the larval samples yielded the
following species: Aedes aegypti, Ae. busckii, Culex bahamensis,
Cx. bisulcatus, Cx. Quinquefasciatus, and Toxorhynchites
guadeloupensis. The adult samples also included the species
Aedes taeniorhynchus, Cx. nigripalpus, Deinocerites magnus, and
Anopheles albimanus. Molecular analysis of the eDNA and bulk
samples resulted in a higher diversity (Table 1).

Species Detected With Molecular Analysis
Molecular analysis of the aquatic eDNA samples yielded the
following species: Aedes aegypti, Ae. busckii, Culex bahamensis,

TABLE 1 | Identified species using each of the different methods.

Morphological Molecular

Adult Larvae Adult Larvae eDNA

Aedes busckii x x x

Ae. aegypti x x x x x

Ae. taeniorhynchus x x

Anopheles albimanus x x

Culex bahamensis x x x x x

Cx. bisulcatus x x x x

Cx. nigripalpus x x

Cx. quinquefasciatus x x x x x

Deinocerites magnus x x

Toxorhynchites guadeloupensis x

Tx. spp. x x

Cx. pipiens molestus*

Cx. pipiens pallens*

Cx. sp. x

eDNA refers to the eDNA water samples. The species annotated with an “*” fall within the

Culex pipiens species complex and may actually be Culex quinquefasciatus as indicated

in the discussion.

Cx. bisulcatus, Cx. pipiens molestus, Cx. quinquefasciatus,
Cx. Renatoi, and Toxorhynchites sp. The larval and adult
samples also included the species Anopheles albimanus, Aedes
taeniorhynchus, Culex bidens, Cx. nigripalpus, Cx. pipiens pallens,
and Deinocerites magnus. The species Cx. bidens and Cx. renatoi
are likely misidentifications: Cx. bidens = Cx. nigripalpus,
Cx. renatoi = Culex sp., which we further elaborate on
in the discussion. The corrected species have been used in
further analysis.

Molecular analysis of the 6 samples of eDNA from
sediment yielded no culicid DNA, which coincided with a
lack of larvae and aquatic eDNA at the same locations. The
samples did however contain DNA identified as chironomid
Chironomus calligraphus.

eDNA Water vs. Dipping
In general, eDNA analysis of water samples resulted in a
higher detection rate of larvae than dipping. Of the 68 aquatic
samples, 39 contained eDNA of mosquitoes and of the latter 11
samples also contained larvae (Figure 2). Most of the species
were detected equally well using both methods (χ2-test: p >

0.28). However, within these samples a significant difference
in detection probability was detected for Cx. bisulcatus (χ2

=

7.1842, p < 0.05) and Cx. quinquefasciatus (χ2
= 20.651, p

< 0.001). Cx. bisulcatus was better detectable by morphology
and Cx. quinquefasciatus by eDNA (Table 1). None of the
sediment samples contained culicid eDNA. However, none of the
larval samples and water samples taken at the same locations
contained culicid eDNA, implying absence ofmosquitoes in these
water bodies.

The difference in detection chance for Cx. quinquefasciatus
and (subsequently) Culex as a whole (NMDS 60% contribution)
(Figure S2 in Supplementary Material) resulted in a detected
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FIGURE 2 | Average number of mosquito species in the bulk samples ± standard error. The number at the bottom of each bar indicates for each island the total

number of species detected for that particular method.

FIGURE 3 | Comparison of between the percentage of positive mosquito

samples for the eDNA and traditional dipping method. Indicated is the

percentage of times larvae were detected by dipping or eDNA water sampling

for each of the islands. The numbers at the bottom of each of the bars indicate

the number of detections for the corresponding method and island. The total

amount of dipping and eDNA water samples was 32, 18, and 18 for St.

Eustatius, Saba, and St. Maarten respectively.

difference between dipping and eDNA-based detections (one-
way ANOSIM: R = 0.4093, p < 0.001). This is mainly caused
by the fact that Cx. quinquefasciatus was detected over ten times
more often in the eDNA samples than in the dipping samples.

Morphological Analysis vs. Molecular
Analysis
The molecular and morphological analysis of larval and
adult bulk samples performed very similar (Figure 3; Table 1).
Differences between morphological and molecular analysis of the
larval samples were found for Cx. bahamensis and Cx. bisulcatus.
Cx. bahamensis was detected better with molecular analysis
(χ2

= 1.1781, p < 0.05) whereas Cx. bisulcatus was detected
better with morphological analysis (χ2

= 7.1842, p < 0.001).
Differences between morphological and molecular analysis of the

adult samples were found for Cx. quinquefasciatus and Culex
overall. Cx. quinquefasciatus and Culex spp. were both detected
better with molecular identification (χ2-test p < 0.05) (χ2-test p
< 0.05) respectively.

Community Differences Per Water Body
Type
Differences in species community between the different water
body types were detected when comparing Bray-curtis similarity
over the dipping and eDNA water samples (One-way ANOSIM:
R = 0.1991, p < 0.01; Table 2), caused by the habitat types
rock pool, plant container and artificial container. The separation
is the largest between rock pool and artificial container (R =

1) and moderate between rock pool and plant container (R =

0.2391) and plant container and artificial container (R = 0.2984)
(Figure S2B). These effects, when corrected for the influence of
volume and subsample count, can be isolated as the result of the
lower detection probability of Cx. bisulcatus, which is negatively
correlated with the volume (logit ANOVA: Z-val = −2.362, p <

0.05) and Cx. sp. which shows a positive trend toward artificial
containers (logit ANOVA: Z-val= 1.799, p < 0.1).

DISCUSSION

In our study, we used a range of sampling and processing
methods for detection of Culicidae in a wide variety of habitats
on three Caribbean islands: Saba, St. Maarten, and St. Eustatius.
Our results suggest that our aquatic eDNA-based approach
is as reliable and for certain species even more reliable than
dipping. In contrast, eDNA originating from sediments did not
result in detection of Culicidae. Although this suggests that this
method may not be suitable, the lack of larval detection in
the water and dipping samples taken at the same sites implies
that no conclusions can be drawn about this method. Species
identifications of larval and adult mosquitoes yielded very similar
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TABLE 2 | Species composition per water body type for all three islands.

Water body

type

Ae.

aegypti

Ae.

busckii

Cx.

bahamensis

Cx.

bisulcatus

Cx.

pipiens molestus

Cx.

quinq.

Cx.

sp.

Toxorhyn-chites

spp.

Artificial

container

1 | 1 | 1 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 3 | 2 | 1 2 | 0 | 0 0 | 0 | 0

Cistern 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 1 | 1 | 0 0 | 0 | 0 0 | 0 | 0

Ditch 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0

Lake 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0

Plant

container

0 | 0 | 0 0 | 1 | 0 0 | 0 | 0 1 | 3 | 0 0 | 0 | 0 2 | 0 | 1 0 | 0 | 0 0 | 2 | 0

Pond 0 | 1 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 1 | 1 | 1 0 | 0 | 0 0 | 0 | 0

Pool 0 | 0 | 0 0 | 0 | 0 0 | 0 | 1 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0

Rockpool 0 | 0 | 0 0 | 0 | 0 0 | 0 | 1 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0

Sink 1 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0 0 | 0 | 0

Treehole 0 | 0 | 0 0 | 1 | 0 0 | 0 | 0 0 | 1 | 0 0 | 0 | 0 4 | 0 | 0 0 | 0 | 0 0 | 0 | 0

Well 0 | 0 | 0 0 | 0 | 0 1 | 0 | 0 0 | 0 | 0 0 | 1 | 0 3 | 0 | 0 2 | 0 | 0 0 | 0 | 0

In each of the cells the order of the islands is: St. Eustatius | Saba | St. Maarten.

results when comparing morphological identification and DNA
from bulk samples, but with some notable exceptions which are
discussed below. Finally, we confirm the notion of Krol et al.
(2019) that larval detection methods based on eDNA reveal
a subset of the adult community, whilst confirming that this
originates in part from inherent differences between larval and
adult sampling. In our study species that were trapped as adult
mosquitoes which were absent from the eDNA samples were
also missing in the larval samples. In addition, some species
detected in eDNA and dipping samples were absent in adult
samples, suggesting that adult and larval sampling yield different
yet complimentary parts of the mosquito puzzle.

Necessary Correction Steps in the
DNA-Based Identification
Even though molecular identification provides promising
results, the molecular analysis initially resulted in some
misidentifications, for which manual corrections had to be made.
These species included: (i) Culex bidens, (ii) Culex pipiens (var.
molestus and pallens), and (iii) Culex renatoi. The former was
identified using bulk sample DNA, the latter two were from
aquatic eDNA samples. (i) Culex bidens is a species known
only from South America, and is therefore an unexpected
find. After re-evaluating the OTUs and corresponding BLAST
results, it is likely that the OTUs identified as Cx. bidens
are misidentified Culex nigripalpus DNA. This species has an
identical identity and is congruent with the morphological
identification from the sample that the OTUs originate from.
(ii) Cx. pipiens var. molestus and pallens were found in
samples where morphologically only Cx. quinquefasciatus was
identified. However, Cx. quinquefasciatus is part of the Culex
pipiens species complex (Harbach, 2012). Since these species are
morphologically and molecularly almost identical (Laurito et al.,
2013), it is possible that Cx. pipiens is actually present on the
islands. (iii) The OTUs identified as Cx. renatoi were derived
from aquatic eDNA samples from wells and artificial containers

collected in St. Eustatius. They are highly dissimilar compared to
the other known Culex species from the island (Cx. bahamensis,
Cx. bisulcatus and Cx. quinquefasciatus; identity<93%). And,
apart from the Cx. renatoi sequence, there are no sequences
available that are similar enough for species identification. Since
Cx. renatoi is a species that typically breeds in plant containers
and is only known from South America, we consider this a
misidentification. This might therefore be a new Culex species
for the island, which has not yet been included in the BOLD
and Genbank databases. Our results suggest that the reliability
of molecular identification, and specifically that of aquatic
eDNA sampling, is highly dependent on the quality of the
reference library, thus re-emphasizing the previously identified
need for more complete global databases (Deiner et al., 2017).
All aforementioned misidentifications were corrected for prior to
the analysis.

Unidentified OTUs
For all molecular data only 8% of the OTUs could be assigned
with certainty to a mosquito species. Of the OTUs that could
not be attributed to mosquito species, a large portion was found
in environmental samples only (82.9%). The same is true for
the OTUs that could not be identified to genus level (95.9%).
Therefore, it is likely that these clusters were unidentifiable due
to degradation of the DNA and due to the presence of DNA
from organisms other than culicids, such as beetles, worms
and amphibians. This is supported by the LCA analysis, which
shows that a large portion of the unidentified OTUs could
not be assigned at all or likely originate from crustaceans
and other unknown taxa within the Diptera. Consequently, it
is presumed that only a negligible amount of culicid DNA
remained unidentified, which is also supported by the detection
probabilities of the larval and aquatic samples. There were
only two species that were difficult to identify using eDNA:
Culex bisulcatus and Toxorhynchites spp. This is most likely
caused by a lack of publicly available sequences. For Cx.
bisulcatus only one sequence was available originating from
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our own reference library. DNA originating from bulk samples
that, according to morphological identification, contained Cx.
bisulcatus, clustered at 97% identity with this sequence. This
indicates that genetic variability may indeed play a role in the
inability to identify this species. Also for Toxorhynchites spp.,
a lack of reference sequences is the most likely explanation
for the fact that none of the larvae of Toxorhynchites could
be identified to species, given that BOLD and GenBank list
only sequences for 18 of the 90 known species for this
genus (mosquitocatalog.org). Overall, we are convinced that
our molecular analysis yields an adequate representation of the
observed species communities, both for bulk and aquatic eDNA
samples, due to the high similarity when compared with the
morphological identifications.

Detection of Larvae Using Dipping
vs. eDNA
There were two major differences between sampling of mosquito
larvae using dipping and our eDNA approach. First, the
analysis of the aquatic samples resulted in a higher diversity
(Table S1 in Supplementary Material), which is congruent
with previous research comparing traditional and eDNA-based
detection (Deiner et al., 2017). Presumably this effect is caused
by the inherent biases of the traditional methods (Deiner et al.,
2017). Second, the eDNA sampling had a higher probability of
detection, which is related to the first result. This difference was
mainly caused by Culex quinquefasciatus DNA that was present
in water bodies where no larvae were found. Cx. quinquefasciatus
was 10 times more often present in aquatic eDNA samples than
in the dipping samples. The water bodies where this species
was detected included almost every water type, even plant
containers. This is uncommon, but has been described before
(Frank et al., 1988), thus confirming the generalist nature of the
species. The reason for this discrepancy between dipping and
eDNA-based detection may be 2-fold: (1) due to our inability to
catch larvae using dipping: larvae can dive for several minutes
(Becker et al., 2013) rendering them harder to catch, especially
in water bodies with lower accessibility such as cisterns and
wells, and (2) due to the persistence of eDNA in the aquatic
environment. Larval development can be as short as 6–7 days
(Becker et al., 2013), but eDNA can persist for weeks (Schneider
et al., 2016) and is likely present at the water surface as the
larvae spend most time there and also pupate at the water
surface. In contrast to the water samples, none of the sediment
samples contained culicid eDNA. Some of the samples did,
however, containDNA from chironomids, a closely related family
within the infraorder Culicomorpha, indicating that detection
was not hindered by PCR inhibition. Although this suggests
that sediment samples can potentially be used for monitoring
of Culicidae and (phylogenetically related) Diptera, our inability
to collect samples at most sites illustrates that it may not be
as straightforward as water samples. Overall, we conclude that
reliability of aquatic eDNA sampling was higher than dipping,
which is mainly due to the underestimation of presence of larvae
of Cx. quinquefasciatus, one of the possible disease vectors on
the islands.

Comparison Between Identification Using
DNA Bulk Samples vs. Morphology
In general both identification methods performed comparably,
but some differences between molecular and morphological
identifications were found. Differences between morphological
and molecular analysis of the larval samples were found for
Cx. bahamensis and Cx. bisulcatus. Cx. bahamensis was detected
more often with molecular analysis. One cause was that most
captured larvae were early instars, which are unidentifiable
morphologically. A portion of these was kept until they emerged
to be identified as adult both morphologically and molecularly,
which could be done successfully by both methods. Cx. bisulcatus
was identified better by morphological analysis, which is likely
due to a lack of reference sequences and will be elaborated
on below. Differences between morphological and molecular
analysis of the adult samples were found for Cx. quinquefasciatus
and Culex overall. Cx. quinquefasciatus was detected more
often by molecular analysis, which is reflected in the observed
difference in detection probability for the Culex spp.

Differences in Subsample Count
There was no detected difference between the samples in relation
to their subsample count.

This is counterintuitive, since eDNA is known to be
heterogeneously distributed over the water bodies (Nathan et al.,
2014). The cause for absence of this effect may be 2-fold. First, the
result of the used subsample volume (25mL), resulting in a bias
toward samples with high subsample count, thereby countering
the effects of eDNA heterogeneity. Secondly, we expect there
is a correlated effect with habitat preference. The latter would
also explain why this parameter still was included in the optimal
GLMMmodel.

Differences Between Water Body Types
A difference in species communities was detected between the
water body types originating from the differences between the
types plant container and artificial container, rock pool and
plant container and rock pool and artificial containers. This is
in line with previous studies, showing the existence of species
specific habitat preference (Andreadis and Armstrong, 2007;
Abella-Medrano et al., 2015). When corrected for sample volume
and subsample count, it becomes apparent that the detected
difference is caused by Cx. bisulcatus which is negatively affected
by higher volumes. This is congruent with the niche of the
species, since it mainly inhabits tree holes and plant containers,
which have small volumes. Aedes aegypti, shows a positive trend
toward bigger water volumes and the Culex previously identified
as Cx. renatoi shows a positive trend toward artificial containers.
These effects are however not significant, which is likely the result
of low sample numbers.

Further Research and Recommendations
Even though the highest mosquito diversity is thought to occur
in the dry season (Abella-Medrano et al., 2015), sampling in the
wet season may provide a more definitive answer due to the
higher mosquito densities. This could also result in a more clear
separation of the communities per water body type.
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This study confirms the notion that eDNA collection should
be tailored toward the ecology of the relevant species to account
for the heterogeneous nature of the eDNA. Future research
searching to extend the proposed methodology should therefore
make a number of adaptations concerning the collection of
aquatic eDNA, most notably sampling from specific parts of the
watercolumn and collection of sufficient subsamples to cover
the heterogeneity of eDNA over the larval habitats. Additionally
there is a need for an adequate reference sequence library,
as has been previously mentioned. We encourage sequencing
of specimens from private/museum collections to supplement
current references, which highlights the need for cooperation
between institutions to locate and gain access to such material.
Furthermore, to gain resolution within species complexes we
recommend adding an additional locus to the analysis (e.g.,
CAD or 16S) (Schneider et al., 2016). Alternatively, other non-
molecular approaches such as MALDI-TOF could be considered
to augment the molecular analysis, as has been explored by
Lawrence et al. (2019).

CONCLUSION

Results of our study provide evidence that the identification
of mosquitoes based on aquatic eDNA using a novel culicid
specific primer resulted in reliable detection of culicid larvae
and overcomes some of the caveats surrounding dipping. Like
dipping, aquatic eDNA collection result in the detection of a
subset of the total community and should therefore be combined
with adult trapping (e.g., human landing catches) for total
culicid diversity assessments. Moreover, our results suggest that
molecular identification could be a useful addition, particularly
for rapid assessments of total diversity in a sample, overcoming
some of the limitations in sample quality, developmental
stage, and sampling effort of morphological identification in
combination with dipping. In doing so, cryptic communities
can be assessed without extensive prior taxonomic knowledge of
the present species. However, molecular identification depends
strongly on the quality of the reference databases. Therefore,
a considerable amount of essential taxonomic work needs to
be done before this method can become widely applicable

in other regions. Completeness in respect to the expected
species should therefore be assessed before implementing the
method. Overall, results from this study provide evidence that
both our eDNA-based detection of larvae and our DNA-based
identification of larvae and adults present methods that are
as reliable, and for some species even more reliable than the
currently used methods. As such, it allows for development of
efficient disease control strategies, verification of management
effectiveness and monitoring of population dynamics.
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Magoč, T., and Salzberg, S. L. (2011). FLASH: fast length adjustment of
short reads to improve genome assemblies. Bioinformatics 27, 2957–2963.
doi: 10.1093/bioinformatics/btr507

Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet J. 17:10. doi: 10.14806/ej.17.1.200

Medeiros, M. C. I., Boothe, E. C., Roark, E. B., and Hamer, G. L. (2017).
Dispersal of male and female Culex quinquefasciatus and Aedes albopictus

mosquitoes using stable isotope enrichment. PLoS Negl. Trop. Dis. 11:e0005347.
doi: 10.1371/journal.pntd.0005347

Meier, R., Shiyang, K., Vaidya, G., and Ng, P. K. L. (2006). DNA Barcoding
and Taxonomy in Diptera : A Tale of High Intraspecific Variability and Low
Identification Success. Syst. Biol. 55, 715–728. doi: 10.1080/10635150600969864

Murugan, K., Vadivalagan, C., Karthika, P., Panneerselvam, C., Paulpandi, M.,
Subramaniam, J., et al. (2016). DNA barcoding and molecular evolution of
mosquito vectors of medical and veterinary importance. Parasitol. Res. 115,
107–121. doi: 10.1007/s00436-015-4726-2

Nathan, L. M., Simmons, M., Wegleitner, B. J., Jerde, C. L., and Mahon, A. R.
(2014). Quantifying environmental DNA signals for aquatic invasive species
across multiple detection platforms. Environ. Sci. Technol. 48, 12800–12806.
doi: 10.1021/es5034052

Panella, N. A., Crockett, R. J. K., Biggerstaff, B. J., and Komar, N. (2016). The
Centers for Disease Control and Prevention resting trap: a novel device
for collecting resting mosquitoes. J. Am. Mosq. Control Assoc. 27, 323–325.
doi: 10.2987/09-5900.1

Patz, J. A., Daszak, P., Tabor, G. M., Aguirre, A. A., Pearl, M., Epstein, J., et al.
(2004). Unhealthy landscapes : policy recommendations on land use change
and infectious disease emergence. Environ. Health Perspect. 1092, 1092–1098.
doi: 10.1289/ehp.6877

Petric, D., Bellini, R., Scholte, E. J., Rakotoarivony, L. M., and Schaffner, F. (2014).
Monitoring population and environmental parameters of invasive mosquito
species in Europe. Parasites Vectors 7, 1–14. doi: 10.1186/1756-3305-7-187

Pilliod, D. S., Goldberg, C. S., Arkle, R. S., Waits, L. P., and Richardson, J.
(2013). Estimating occupancy and abundance of stream amphibians using
environmental DNA from filtered water samples. Can. J. Fish. Aquat. Sci. 70,
1123–1130. doi: 10.1139/cjfas-2013-0047

Frontiers in Ecology and Evolution | www.frontiersin.org 11 July 2019 | Volume 7 | Article 24015

https://doi.org/10.2987/09-5982.1
https://doi.org/10.1111/mec.14350
https://doi.org/10.1111/1755-0998.12130
https://doi.org/10.1016/j.biocon.2014.11.018
https://doi.org/10.1101/081257
https://doi.org/10.1186/s13071-017-2310-6
https://www.arcgis.com/home/item.html?id=ed712cb1db3e4bae9e85329040fb9a49
https://www.arcgis.com/home/item.html?id=ed712cb1db3e4bae9e85329040fb9a49
https://doi.org/10.1007/s13353-013-0180-y
https://doi.org/10.2307/3494890
https://doi.org/10.1111/1755-0998.12138
https://doi.org/10.1899/13-046.1
https://doi.org/10.1111/2041-210X.12595
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.2987/8756-971X-28.4.10
https://doi.org/10.4269/ajtmh.2005.72.209
https://doi.org/10.13140/RG.2.1.4002.1208
https://doi.org/10.2987/08-5800.1
https://doi.org/10.1111/j.1755-263X.2010.00158.x
https://doi.org/10.3389/fevo.2019.00260
https://doi.org/10.5645/ghp2013.01.01.03
https://doi.org/10.1016/S0959-3780(01)00007-3
https://doi.org/10.1590/0074-0276130457
https://doi.org/10.1017/S0031182018001658
https://doi.org/10.1007/s00436-014-4237-6
https://doi.org/10.1080/16549716.2017.1350394
https://doi.org/10.1086/678128
https://doi.org/10.1093/bioinformatics/btr507
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1371/journal.pntd.0005347
https://doi.org/10.1080/10635150600969864
https://doi.org/10.1007/s00436-015-4726-2
https://doi.org/10.1021/es5034052
https://doi.org/10.2987/09-5900.1
https://doi.org/10.1289/ehp.6877
https://doi.org/10.1186/1756-3305-7-187
https://doi.org/10.1139/cjfas-2013-0047
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Boerlijst et al. DNA Based Mosquito Monitoring

Putra, C. A., Hikmatullah, D., Prawiradilaga, D. M., and Harris, J. B.
C. (2015). Surveys at Bagan Percut, Sumatra, reveal its international
importance to migratory shorebirds and breeding herons. Kukila 18, 46–59.
doi: 10.1093/bioinformatics/btr026

Rawlins, S. C., Hinds, A., and Rawlins, J. M. (2008). Malaria and its vectors in
the Caribbean: the continuing challenge of the disease forty-five years after
eradication from the islands.West Indian Med. J. 57, 462–469.

Rejmánková, E., Grieco, J., and Achee, N. (2013). World’ s Largest Science,

Technology and Medicine Open Access Book Publisher. INTECH.
Renshaw, M. A., Olds, B. P., Jerde, C. L., Mcveigh, M. M., and Lodge, D. M. (2015).

The room temperature preservation of filtered environmental DNA samples
and assimilation into a phenol-chloroform-isoamyl alcohol DNA extraction.
Mol. Ecol. Resour. 15, 168–176. doi: 10.1111/1755-0998.12281

Richardson, B. A., and Richardson, M. J. (2014). Bromeliad invertebrate
communities on Saba, Netherlands Antilles. Caribbean Naturalist 14,
1–12. Available online at: https://www.eaglehill.us/CANAonline/cana-n14-
2014.shtml

Risks, P. H., Options, C., Medlock, J. M., Hansford, K. M., Schaffner, F.,
and Versteirt, V. (2012). A review of the invasive mosquitoes in europe,
public health risks, and control options. 12, 435–447. doi: 10.1089/vbz.
2011.0814

Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016).
VSEARCH: a versatile open source tool for metagenomics. Peer J. 4:e2584.
doi: 10.7717/peerj.2584

Roussel, J.-M. M., Paillisson, J.-M. M., Tréguier, A., and Petit, E. (2015). The
downside of eDNA as a survey tool in water bodies. J. Appl. Ecol. 52, 823–826.
doi: 10.1111/1365-2664.12428

Rueda, L. M. (2008). Global diversity of mosquitoes (Insecta: Diptera: Culicidae)
in freshwater. Freshwater Animal Diversity Assessment. eds E. V. Balian, C.
Lévêque, H. Segers, and K. Martens (Dordrecht: Springer Netherlands), 595,
477–487.

Schaffner, F., and Mathis, A. (2014). Dengue and dengue vectors in the WHO
European region: past, present, and scenarios for the future. Lancet Infect. Dis.
14, 1271–1280. doi: 10.1016/S1473-3099(14)70834-5

Schneider, J., Valentini, A., Dejean, T., Montarsi, F., Taberlet, P., Glaizot,
O., et al. (2016). Detection of invasive mosquito vectors using
environmental DNA (eDNA) from water samples. PLoS ONE 11:e0162493.
doi: 10.1371/journal.pone.0162493

Schrader, C., Schielke, A., Ellerbroek, L., and Johne, R. (2012). PCR inhibitors
- occurrence, properties and removal. J. Appl. Microbiol. 113, 1014–1026.
doi: 10.1111/j.1365-2672.2012.05384.x

Strickler, K. M., Fremier, A. K., and Goldberg, C. S. (2015). Quantifying effects of
UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol.
Conserv. 183, 85–92. doi: 10.1016/j.biocon.2014.11.038

Thomsen, P. F., Kielgast, J., Iversen, L. L., Wiuf, C., Rasmussen, M.,
Gilbert, M. T. P., et al. (2012). Monitoring endangered freshwater
biodiversity using environmental DNA. Mol. Ecol. 21, 2565–2573.
doi: 10.1111/j.1365-294X.2011.05418.x

Thomsen, P. F., and Willerslev, E. (2015). Environmental DNA - an emerging tool
in conservation for monitoring past and present biodiversity. Biol. Conserv.
183, 4–18. doi: 10.1016/j.biocon.2014.11.019

Turner, C. R., Barnes, M. A., Xu, C. C. Y., Jones, S. E., Jerde, C. L., and
Lodge, D. M. (2014). Particle size distribution and optimal capture of
aqueous macrobial eDNA. Methods Ecol. Evol. 5, 676–684. doi: 10.1111/204
1-210X.12206

van der Berg, H., and Schaffner, F. (2016). Training Curriculum Invasive

Mosquitoes and (re-)Emerging Vector-Borne Diseases in the WHO

European Region. WHO.
Van der Kuyp, E. (1954). Mosquitoes of the Netherlands Antilles and

their hygienic importance. Studies Fauna Curacao Other Caribbean Islands

23, 36–114.
Virgilio, M., Backeljau, T., Nevado, B., and De Meyer, M. (2010). Comparative

performances of DNA barcoding across insect orders. BMC Bioinformatics

11:206. doi: 10.1186/1471-2105-11-206
WHO (2017a).WHOMalaria Report 2017.
WHO (2017b). Vector-Borne Diseases. Geneva: World Health Organization

(WHO). Available online at: https://www.who.int/news-room/fact-sheets/
detail/vector-borne-diseases (accessed January 16, 2018).

Williams, K. E., Huyvaert, K. P., and Piaggio, A. J. (2016). No filters, no fridges : a
method for preservation of water samples for eDNA analysis. BMC Res. Notes

9:298. doi: 10.1186/s13104-016-2104-5
Wilson, I. G. (1997). Inhibition and facilitation of nucleic acid amplification. Appl.

Environ. Microbiol. 63, 3741–3751.
Zhou, Y. J., Estes, M. K., Jiang, X., and Metcalf, T. G. (1991). Concentration and

detection of hepatitis A virus and rotavirus from shellfish by hybridization tests.
Appl. Environ. Microbiol. 57, 2963–2968.

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Boerlijst, Trimbos, Van der Beek, Dijkstra, Van der Hoorn and

Schrama. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 12 July 2019 | Volume 7 | Article 24016

https://doi.org/10.1093/bioinformatics/btr026
https://doi.org/10.1111/1755-0998.12281
https://www.eaglehill.us/CANAonline/cana-n14-2014.shtml
https://www.eaglehill.us/CANAonline/cana-n14-2014.shtml
https://doi.org/10.1089/vbz.2011.0814
https://doi.org/10.7717/peerj.2584
https://doi.org/10.1111/1365-2664.12428
https://doi.org/10.1016/S1473-3099(14)70834-5
https://doi.org/10.1371/journal.pone.0162493
https://doi.org/10.1111/j.1365-2672.2012.05384.x
https://doi.org/10.1016/j.biocon.2014.11.038
https://doi.org/10.1111/j.1365-294X.2011.05418.x
https://doi.org/10.1016/j.biocon.2014.11.019
https://doi.org/10.1111/2041-210X.12206
https://doi.org/10.1186/1471-2105-11-206
https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
https://doi.org/10.1186/s13104-016-2104-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


ORIGINAL RESEARCH
published: 10 July 2019

doi: 10.3389/fevo.2019.00260

Frontiers in Ecology and Evolution | www.frontiersin.org 1 July 2019 | Volume 7 | Article 260

Edited by:

David Andrew Bohan,

INRA Centre Dijon Bourgogne

Franche-Comté, France

Reviewed by:

Lingxin Chen,

Yantai Institute of Coastal Zone

Research (CAS), China

Gregor Devine,

QIMR Berghofer Medical Research

Institute, Australia

*Correspondence:

Louie Krol

louie.krol@naturalis.nl

Specialty section:

This article was submitted to

Environmental Informatics,

a section of the journal

Frontiers in Ecology and Evolution

Received: 09 February 2019

Accepted: 20 June 2019

Published: 10 July 2019

Citation:

Krol L, Van der Hoorn B, Gorsich EE,

Trimbos K, Bodegom PM and

Schrama M (2019) How Does eDNA

Compare to Traditional Trapping?

Detecting Mosquito Communities in

South-African Freshwater Ponds.

Front. Ecol. Evol. 7:260.

doi: 10.3389/fevo.2019.00260

How Does eDNA Compare to
Traditional Trapping? Detecting
Mosquito Communities in
South-African Freshwater Ponds
Louie Krol 1,2*, Berry Van der Hoorn 2, Erin E. Gorsich 3,4, Krijn Trimbos 1,

Peter M. van Bodegom 1 and Maarten Schrama 1,2

1 Institute of Environmental Sciences, Leiden University, Leiden, Netherlands, 2Naturalis Biodiversity Center, Leiden,

Netherlands, 3 The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of

Warwick, Coventry, United Kingdom, 4 School of Life Sciences, University of Warwick, Coventry, United Kingdom

Improved biomonitoring of mosquitoes requires an in-depth understanding on

occurrences of both vector and non-vector species, in larval, and adult stages. Accurate

descriptions of the ecological context in which mosquitoes thrive remain limited,

particularly for larval stages. The aim of this study was to develop amixed-amplicon eDNA

approach to assess (i) whether mosquito larval communities of stagnant fresh-water

bodies can be detected using a Culicidae-specific primer and (ii) how these results

compare to traditional trapping of adult mosquitoes. Results from 32 ponds inside and

outside Kruger National Park, South Africa show that our primer detected mosquito

eDNA. However, it yielded only a subset of the species found using adult trapping

methods. Particularly the less frequent and container-breeding species were not found.

Our approach provides the first steps toward an eDNA-based method to assess the

entire community of larval-stagemosquitoes. It may thereby overcome current taxonomic

hurdles presented by morphological identification of larvae. As such, it holds great

promise for biomonitoring and ecological studies of mosquitoes.

Keywords: eDNA, culicidae primer, mosquitoes, vector-borne diseases, biomonitoring, Kruger National Park,

mosquito communities

INTRODUCTION

Mosquitoes (order: Diptera, family: Culicidae) are known vectors for a wide variety of pathogens.
The mosquito community composition is influenced by myriad of biotic and abiotic factors (e.g.,
resource availability, predation, temperature) that operate mostly at a local scale (Washburn, 1995;
Reiter, 2001; Chase and Knight, 2003; Lafferty, 2009; Young et al., 2017; Schrama et al., 2018;
Krol et al., 2019). A more comprehensive understanding of the drivers of mosquito community
composition, may facilitate better management of mosquito communities (Beketov and Liess,
2007; Stresman, 2010). However, accurate descriptions of the impacts of these drivers on mosquito
community composition remain limited, particularly those regarding larval habitats, largely due to
logistic, and taxonomic challenges in identifying and quantifying mosquitoes (Cardoso et al., 2011;
Ferraguti et al., 2016; Hunt et al., 2017).

A mixed amplicon metagenomics approach based on environmental DNA (eDNA) potentially
allows for the simultaneous, DNA-based identification of an entire species community
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(Taberlet et al., 2012), using species-specific traces of DNA
(derived from feces, urine, hair, skin, or other cells). These traces
can be extracted from various environments (e.g., water, air, soil)
(Ficetola et al., 2008) and selected regions of these traces can
be amplified using primers that bind to a well-known region
on the genome. For animals, a standardized fragment of the
mitochondrial cytochrome c oxidase 1 (CO1) is typically used
for DNA-barcoding (Hebert et al., 2003). These, amplicons are
then linked to known taxa, using a DNA barcoding reference
database. A metagenomics approach to study entire mosquito
communities would constitute a potentially powerful method to
characterize mosquito communities and supplement traditional
sampling approaches for determining larval communities.

Two aspects of the mosquito life history render them an ideal
species group to develop an eDNA approach. First, mosquito
larvae generally occur in high abundances (Hoekman et al.,
2016). These high abundances likely increase the local amount
of eDNA which increases the detection probability (Elbrecht
et al., 2017). Second, the aquatic environment is required by
mosquitoes to deposit eggs, for larvae to hatch and grow, and
adults to emerge. For the vast majority of mosquito species,
all pre-adult life stages are concentrated at the water surface,
including adult emergence (Rejmánková et al., 2013). As a result,
most eDNA is likely to be present in the upper part of the
water column and the periphery of a given water body, an
area that is generally most accessible for sampling. A previous
study demonstrated that eDNA methods could detect invasive
Aedes species in freshwater (Schneider et al., 2016). However,
this study was limited to the detection of invasive Aedes species
using a specific-primer targeting the 16S region, for which
comprehensive species databases are currently non-existing.
Moreover, in the same study, eDNA samples were isolated from
small (and relatively clean) container habitats (Schneider et al.,
2016), thus begging the question whether the method would also
be applicable in larger, turbid environment of temporary ponds,
or streams with a more complex community. Given that these
challenges exist, it remains unknown if an eDNA approach can
also be used to detect entire communities of mosquitoes and
differences therein.

The aim of this study was therefore (i) to test if we were able to
pick up the mosquito community composition of stagnant fresh-
water bodies using a customized local barcode database and a
tailored family-specific mosquito eDNA primer on CO1, and (ii)
to assess how our eDNA results relate to adult trapping methods.
To this end, a field study was conducted, inside Kruger National
Park (KNP), South-Africa, and in the fringing rural communities,
by sampling both eDNA as well as adult mosquitoes in the same
water body.

MATERIALS AND METHODS

Setup of the Field Study
A field study was conducted between 18 March and 10 May
2017 in and alongside Kruger National Park, South-Africa, at
five locations (Figure 1). We sampled four paired locations
(Punda Maria, Satara, Skukuza, and Malelane), each with one
location inside the park (hereafter “inside”) and one location

outside the park (hereafter “outside”), and an additional unpaired
location inside the park (Shingwedzi). Locations inside the park
have far lower population densities of people and livestock and
therefore differ in the degree of anthropogenic impact on the
ecosystem, including the freshwater habitat (du Toit et al., 2003).
At each location, we sampled three to four stagnant water bodies
(depending on availability for adequate sampling; Table S1),
which served as biological replicates. As a result, a total of 32
water bodies were sampled. Using a variety of trapping methods
at 32 trapping sites across 4 regions, we trapped 3,918 adult
female mosquitoes belonging to 43 species; Table S1). For more
information about the adult trapping methodology at these water
bodies, see Electronic Appendix S1 and a detailed description
in Gorsich et al. (2019). Our eDNA approach assessed the
larval community in a single discrete water body at a single
point in time whereas the adult trapping method assessed the
adult community around a given water body during multiple
trapping nights.

eDNA Field Sample Collection
A known challenge with eDNA sampling is that eDNA is not
homogenously distributed (Turner et al., 2014). To improve
the probability of detection, 30 subsamples per water body,
each of 25mL, were collected with a pipet controller (Integra
Bioscience), and pooled into a 750mL bottle. Each subsample
was taken from the upper (0–5 cm) water layer along the shore
line, approximately two meters apart. These were immediately
stored in a cooling box, transferred to a fridge, and stored at
4◦C until filtration within 24-h. The effects of using this method
of initial eDNA preservation might have reduced the detection
probability (Barnes et al., 2014). However, these effects have not
been investigated in this study.

In the lab, eDNA was collected using a 250mL Sartorius
filtering tower (Sartorius-stedim), a mobile vacuum pomp
(Datura Molecular Solutions), and 0.22-micron polyethersulfone
(PES) filters (250mL per filter, i.e., three filters per water body),
with a diameter of 47mm (Tisch Scientific) (Turner et al., 2014).
To prevent cross-contamination, the Sartorius filtering tower was
cleaned between water bodies with bottled water (to remove sand
particles) and then soaked for 30min in a 0.9% bleach solution
to degrade remaining DNA. Prior to filtration of field samples,
bottled water was used as a negative control to test for cross-
contamination. After filtration, the filter was immediately placed
in separate 2mL centrifuge tubes and completely immersed in
900 µL Longmire buffer (100mM Tris, 100mM EDTA, 10mM
NaCl, 0.5% SDS, 0.2% sodium azide; Williams et al., 2016) and
stored at 4◦C in a fridge until DNA extraction. The advantage of
Longmire buffer above CTAB buffer is that it preserves DNA at
room temperature for at least 2 weeks (Renshaw et al., 2015).

eDNA Extraction
For the extraction and purification of DNA from the field
samples, an established phenol-chloroform-isoamylalcohol (PCI)
protocol for DNA extraction was used followed by a DNA
purification step using the Qiagen DNeasy blood and tissue
kit (Renshaw et al., 2015). Unfortunately, this method did
not remove all PCR inhibitors, which may have negatively
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FIGURE 1 | Map depicting four paired locations [Punda Maria (A), Malelane (C), Skukuza (D), and Satara (E)] and a single unpaired location [Shingwedzi (B)],

each location has three or four stagnant water bodies. Five locations were situated inside Kruger National Park, South Africa (natural area, depicted with a black

triangle); four were situated in the fringing rural communities (rural communities, depicted with a gray dot). See Table S1 for the coordinates. Courtesy of Maarten van

’t Zelfde.

impacted the following steps. We considered dilution of the
sample undesirable (this would negatively impact the detection
probability of less abundant species), and therefore used the
OneStep-96TM PCR inhibitor removal kit (Zymo Research)

to remove remaining humic acids and other PCR-inhibitors.
For the PCI protocol, the stored PES-filters containing the
eDNA were incubated for 10min at 65◦C. After this, 900
µL phenol-chloroform-isoamylalcohol (PCI, 25:24:1) was added
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FIGURE 2 | Topography and PCR-efficacy of LCO-1490/R-COI650, BF1/BR1 (BF) and eCul-F/eCul-R (eCul). Primer pairs BF and eCul are shown with their

respective position on the CO1-region, as amplified by the LCO-1490/R-COI650 primers. Note that the BF and eCul primers span an overlapping region, highlighting

that this is a highly informative region. The black part of the pie chart shows the PCR-efficacy (e.g., the ability of the PCR protocol to generate a PCR fragment),

indicating that the primer is able to pick-up the specimen and corresponding species or species complexes. Courtesy of Erik-Jan Bosch.

and vortexed until the PES-filter was completely disintegrated.
The 2mL tubes containing the disintegrated PES-filters were
centrifuged at 15,000 × g for 5min and 700 µL of the aqueous
layer was transferred to a fresh 2mL centrifuge tube. To
this mixture, 700 µL chloroform-isoamylalcohol (CI, 24:1) was
added, vortexed for 10 s, centrifuged at 15,000 × g for 5min
and 500 µL of the aqueous layer was transferred to a fresh
2mL centrifuge tube. To this tube, 1.25mL of ice-cold 96%
ethanol and 20 µL 5M NaCl was added and precipitated for
20min at −20◦C, centrifuged at 15,000 × g for 10min and
liquid was decanted. Pellets were left to air-dry until no visible
liquid remained (Laramie et al., 2015; Renshaw et al., 2015;
Williams et al., 2016). This pellet was resuspended in 180 µL
ATL-buffer and DNA extraction was continued with the DNeasy
Blood & Tissue kit (Qiagen), for DNA purification, using the
manufacture protocol. DNA was finally eluted in 200 µL AE-
buffer. From this, 100 µL was transferred to OneStep-96TM PCR
inhibitor removal kit plates (Zymo Research). Inhibitors were
removed following the protocol of the manufacturer. Samples
belonging to the same water body were combined, which made
a total of 32 eDNA-samples. The DNA quality and quantity
of the eDNA mix-plates were measured with a DropSense96
(Trinean) spectrophotometer.

Construction of a Mosquito DNA
Reference Database
For most mosquito species, reference sequences are not available.
For example, of the 3,725 species of Culicidae known globally,
barcodes are only available for 1,078 species (29%) in the
barcoding of life database (BOLD) of which only 716 (19%)
are in the public domain (database accessed 12-09-2017). For
South Africa, a similar picture arises: 168 species are known

within the subfamily Culicinae in South Africa for which
only 45 species (26%) have publicly available sequences on
BOLD (database accessed 31-08-2018, Figure S1). Therefore,
during the field survey (Electronic Appendix S1), we collected
95 adult mosquito specimens from 38 taxa (Table S2) for DNA-
barcoding. These morphologically identified specimens were
used to construct a customized DNA reference database for
the CO1 region, which reduces the probability of non-and
misidentification, due to a lack of reference material (Virgilio
et al., 2010). DNA extractions on all adult mosquito specimens
were performed with the DNeasy Blood & Tissue kit (Qiagen),
using the protocol provided by the manufacturer. An 840 bp
fragment of the mitochondrial cytochrome c oxidase 1 (CO1)
region was amplified using the primers LCO-1490 (forward)
(Folmer et al., 1994) and R-COI650 (reverse) (Hemmerter et al.,
2007). The reaction mix contained 3 µL 10x CoralLoad PCR-
buffer (Qiagen), 0.5 µL 25mMMgCl2 (Qiagen), 1 µL 10 mg/mL
BSA (Life), 0.5 µL 2.5mM dNTP (Qiagen), 0.25 µL 5U TaqPol
(Qiagen), 1 µL of 10 pMol/µL of each primer, 5 µL template
DNA and 17.75 µL MQ (Ultrapure). The PCR was performed
using a Bio-Rad C1000 thermocycler (Bio-Rad Laboratories) the
amplification protocol was as follows: 94◦C for 3min, 45 cycles
of 94◦C for 30 s, 49◦C for 45 s and 72◦C for 45 s, then finally
72◦C for 5min (Batovska et al., 2016). After PCR, all reactions
were visually assessed with an 2% electrophoresis agarose gel,
stained with ethidium bromide. The amplicons were sequenced
with Sanger sequencing at BaseClear (Leiden, the Netherlands),
reads were assembled and annotated with Geneious, version R10
(Kearse et al., 2012).

eDNA Mosquito Specific Primer Design
A mosquito specific environmental DNA primer was designed
for the CO1 region, based upon the sequences obtained
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during this study as well-upon all Culicidae species in BOLD
and GenBank which were batch-downloaded (downloaded at
25-06-2017), and clustered into operational taxonomic units
(OTUs) with PrimerMiner (Elbrecht and Leese, 2015, 2017a).
Other genomic regions were also considered [e.g., CAD,
ITS (Reidenbach et al., 2009; Batovska, 2016)]. However,
we decided the use CO1 since most species barcodes are
collected for the CO1 region. First, multiple degenerated
primers were obtained and tested in-silico on the all compiled
sequences using the Primer3 plug-in for Geneious, version
R10 (Rozen and Skaletsky, 1999; Kearse et al., 2012). We
selected the optimal primer pair based upon three criteria;
primer efficacy, taxonomic resolution, and amplicon size (where
smaller amplicons were preferred over larger amplicons because
of their higher abundance). For the optimal pair: eCul-
F, 5′GGRKCHGGDACWGGDTGAAC-3′ (forward) and eCul-
R, 5′-GATCAWACAAATAAAGGTAWTCGATC-3′ (reverse),
(hereafter “eCul primers”), 92% (1,050 of 1,135) of OTUs could be
picked up, with a taxonomic resolution similar to the taxonomic
resolution of the entire CO1 barcoding region, and an amplicon
size of 200 bp. Upon primer sequence removal, a barcode of
154 bp remains. We did not further optimize the sequences of
the primer.

In-situ and in-vitro Primer Evaluation and
eDNA Sample PCR Processing
The BF1 and BR1 CO1 general freshwater metabarcoding
primers (hereafter, BF primers; Elbrecht and Leese, 2017b) were
included as a control for primer evaluation. All three primer
pairs, i.e., the barcoding primer pair LCO-1490/R-COI650 and
the metabarcoding primer pairs BF and eCul, were tested in-situ
on the DNA of the 95 mosquito specimens representing 38 taxa
(Figure 2) to assess amplification efficacy and efficiency.

The in-vitro primer evaluation on the 32 eDNA samples
included only the eCul and the BF eDNAmetabarcoding primers.
The reaction mixes for both eDNA-primers contained 3µL 10x
CoralLoad PCR-buffer (Qiagen), 0.5 µL 25mMMgCl2 (Qiagen),
1 µL 10 mg/mL BSA (Life), 0.5 µL 2.5mM dNTP (Qiagen), 0.25
µL 5U TaqPol (Qiagen), 1 µL of 10 pMol/µL of each primer,
3 µL template DNA and 17.75 µL MQ (Ultrapure). The PCR
was performed using a Bio-Rad C1000 thermocycler (Bio-Rad
Laboratories). The amplification protocol for the BF primers
was as follows: 94◦C for 3min, 45 cycles of 94◦C for 30 s, 41◦C
for 30 s, and 72◦C for 20 s, then finally 72◦C for 5min. The
amplification protocol for the eCul primers was as follows: 94◦C
for 3min, 45 cycles of 94◦C for 30 s, 60◦C for 30 s, and 72◦C for
20 s, then finally 72◦C for 5min. Per sample, a single replicate was
used. After PCR, all reactions were visually assessed with an 2%
electrophoresis agarose gel, stained with ethidium bromide. PCR-
efficacy was assessed by presence-absence of a signal and PCR-
efficiency was estimated based upon the relative signal intensity.
All extraction and amplification negative controls were negative,
indicating that there was no cross contamination.

Next-Generation Sequencing
Library preparation was performed with the NEBNext Fast
DNA Library Prep Set for Ion Torrent (New England Biolabs)

using only half of the described reaction volume. Amplicon
concentration was assessed with capillary electrophoresis
using the Qiaxcel (Qiagen) and concentration equalization
was performed with the Qiagility pipetting robot (Qiagen).
Subsequent analysis was done conform the IonPGM Hi-Q
handbook with the Ion OneTouch2 (Life Technologies, Guilford,
CT, USA) and BioAnalyzer (Agilent). The eDNA amplicons
were sequenced on an Ion-Torrrent Personal Genome Machine
(Life Technologies, Guilford, CT, USA) with an Ion 218C chip,
at Naturalis Biodiversity Center (Leiden, the Netherlands).
The output in FASTQ-format was processed using the Galaxy
platform, on the Naturalis Galaxy instance (Blankenberg et al.,
2010; Afgan et al., 2016). Initial assessment of the NGS data
was performed with the PRINSEQ algorithm (Schmieder and
Edwards, 2011). Sequences with a phred-score <20 on the 3′side
of the sequence were removed. Only reads that contained both
the forward and reverse primer, and those that had a minimal
length of 200 bp for the eCuL-primers and 258 bp for the BF-
primers, were used for further analysis. The primer sequences
were not removed. Operational taxonomic units (OTUs) were
generated using the VSEARCH algorithm (threshold: 97%
similarity; minimal 2 reads) (Rognes et al., 2016). Only OTUs
with >10 reads were used for further analysis. The sequences
were queried with the BLAST-tool (Camacho et al., 2009) using
the megablast algorithm, against the local copies of BOLD,
NCBI/GenBank (downloaded at 14-02-2018) and our custom
Culicidae KNP reference database, with a maximum e-value of
0.05, a minimum hit coverage of 80%, a minimum sequence
identity of 80% and a maximum of 100 hits per sequences per
database. We determined the lowest common ancestor from
these BLAST-output files by clustering all hits with a bit-score
differences lower than 8% from the best hit. All hits above a
threshold for minimum hit coverage of 80% and a minimum
sequence identity of 97% were described as a best hit. All
LCA-output files were merged with OTU-tables and compared
using MS Excel (version 16.14.1, for Macintosh). To test the
identification accuracy, a phylogenetic analysis was performed
on all OTUs that could be identified to family level (Figure S2),
where accuracy implied that OTUs belonging to the same family,
cluster together. Sequences were aligned by performing multiple
sequence alignments, using the MAFFT v.7.222 plug-in for
Geneious, version R10 (Katoh et al., 2002; Kearse et al., 2012)
with a maximum of 1,000 iterations. The alignment was exported
as a Nexus-file to Mesquite (Maddison and Maddison, 2018;
Mesquite: a modular system for evolutionary analysis.V.3.31)
and exported to the CIPRES science gateway v.3.3 (Miller
et al., 2010) as a MrBayes Nexus-input file and run with
MrBayes 3.2.2 on XSEDE (Huelsenbeck and Ronquist, 2001;
Ronquist and Huelsenbeck, 2003) with the following parameters:
(lset nst = 6 rates = invgamma; unlink, statefreq = (all),
revmat= (all), shape= (all), pinvar= (all); prset, applyto= (all),
ratepr = variable; mcmcp, ngen = 100000000, relburnin = yes,
burninfrac = 0.25 printfreq = 1000, samplefreq = 1000,
nchains = 4, savebrlens = yes). Posterior summarization and
quality control was performed using Tracer V1.7.1 (Rambaut
et al., 2018). Cladograms were visualized and annotated with
FigTree v1.4.3 (Rambaut, 2012).
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FIGURE 3 | Taxonomic range as picked-up by the BF1/BR1 (BF) eCul-F/eCul-R (eCul) primers, from the eDNA field samples, expressed in number of reads (total

number of reads below each pie chart). Note that the number of reads represents the post-PCR distribution, and not the taxa abundance. The BF primers picked up a

wide range of unrelated taxa, whereas the eCul primers picked up a narrow range of related taxa, most of which belonged to families within the infraorder

Culicomorpha (order: Diptera).

Data Analysis
To compare the results of our eDNA approach with
those from adult trapping, first we investigated the
taxonomic resolution and accuracy of our morphologically
and DNA-based species identification and how these
relate. Second, we normalized the different measures
of abundance (e.g., reads for eDNA vs. number of
observations for adult trapping) for comparison of the
different methods.

For the first step, we assessed the morphological identification
accuracy and validated the reference database by querying
all sequences with the BLAST-tool (Camacho et al., 2009).
The megablast algorithm was used against the local copies of
BOLD and NCBI/GenBank (downloaded at 14-02-2018) on
the Galaxy platform (Blankenberg et al., 2010; Afgan et al.,
2016), with a maximum e-value of 0.05, a minimum hit
coverage of 70% and sequence identity of more than 97%.
To assess if the eCul and BF primers were able to pick
up all different taxa present in the reference database, an
in-silico test was performed. The theoretical amplicons were
extracted with Geneious, version R10 (Rozen and Skaletsky,
1999; Kearse et al., 2012) and an in-silico mock-community
was constructed. This mock-community was analyzed in the
same way as the real NGS data to assess the taxonomic
resolution of our approach, which facilitated a comparison
between both approaches by harmonizing the taxonomic
resolution (Table S3).

For the second step, for both approaches and both primers
(eCul and BF), presence-absence matrices were constructed,

by transforming abundance data (number of reads or number
of observations) to binary data (e.g., present 1 or absent 0).
Both approaches and both primers were then compared
with a Bray-Curtis similarity matrix. This also allowed
comparing between the locations inside Kruger National
Park and the locations in the fringing communities. For
each location, the proportion of species found in the adult
trapping that also was found with either primer was determined
and plotted against the Bray-Curtis similarity results. The
resulting graph (Figure 4) gives an indication of how the two
approaches relate.

To visualize the detection probability (Figure 5), we
calculated the average relative abundance (according to
adult trapping) for each of the species and plotted this
against the number of locations where we observed the
corresponding larval stage. Using this method, we investigated
the detection probability based on adult abundance and
visualized potential insufficient sequencing depth. This
graph mimics the theoretical abundance of template DNA
during sequencing. To test for insufficient sequencing depth
(e.g., the ability to detect the less abundant templates), a
rarefaction analysis (Heck et al., 1975) of the sequencing data
was performed, including only OTUs that were identified
as Culicidae according to both the eCul and BF sequencing
data (Figure S3).

Data analysis was conducted with RStudio (R version 3.2.1; R
Core Team, 2016) using the Vegan package (Philip, 2009) and
graphed using GraphPad Prism (version 7.00 for Macintosh),
GraphPad Software, San Diego California USA.
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FIGURE 4 | Comparison of eDNA and adult trapping for the morphological

identification of mosquitoes. Community similarity between adult trapping and

eDNA (expressed as the distance in the Bray Curtis-index) was plotted against

the proportion of species that were observed with the eCul or BF primers. In

general, the eCul primers performed better than the BF primers, however

overall similarity between the two approaches was low.

RESULTS

Primer Evaluation and Comparison
In general, the eCul primer pair performed better than the
BF and LCO primer pairs. The in-silico primer evaluation
of the eCul and BF primers indicated that the taxonomic
coverage (i.e., the proportion of species amplified of the target
group) and taxonomic discrimination (i.e., the discrimination
capacity at the species, genus or family level) were similar
to the complete CO1 barcoding region. The adult mosquito
specimens (n = 87) represented 38 taxa (Table S2). Our in-
silico test based on the CO1 barcoding data also generated
38 OTUs. However, these OTUs do not always correspond to
the level of species, either because of a lack of morphological
differentiation between closely related species or because
DNA was not informative enough to distinguish between
species (Table S3).

The in-situ primer validation of the eCul primers showed the
highest PCR-efficacy (97.9%) and efficiency in comparison with
the LCO-1490/R-COI650 and BF primers (Figure 2). The LCO-
1490/R-COI650 and BF primers generated a similar distribution
in PCR-efficacy (84.2%) (Table S2). However, the signal intensity
of the fragments on the gel was weak, indicating that the
PCR-efficiency of the BF primers for mosquitoes was overall
low, which is in line with previous results (Elbrecht and
Leese, 2017b). The eCul and BF-primers are topographically
overlapping (Figure 2), indicating that this region of CO1 is
highly informative. The in-vitro primer evaluation showed that
the eCul primers picked up more OTUs (expressed in number of
reads) belonging to the order of Diptera (47.5%) when compared
to the BF primers (3.6%) (Figure 3). Besides Diptera, the eCul

FIGURE 5 | Relationship between the relative species abundance (using

eDNA) and the number of locations where these species were found (using

adult trapping). Names in red indicate species that were found using both the

eCul primer and adult trapping, blue species names indicate those that were

detected by eCul and BF primers and adult trapping, black species names

indicate species that were only detected using adult trapping. eDNA results

always represent a subset of the adult populations. Specimens that could not

be identified morphologically to species level were clustered into species

complexes, indicated with “Cp”.

primers also picked up a number of other taxa within the phylum
Arthropoda, most notably Podocopida (26.9%) and Diplostraca
(11.6%). Within the Diptera, the eCul primers picked up mainly
OTUs belonging to families within the infraorder Culicomorpha
of which Chironomidae (35.6%) was the most abundant family
and Culicidae the second most abundant family (33.3%). In
addition, a substantial proportion of the OTUs within the order
Diptera (18.7%) could not be linked to any known family. The
BF primers picked up taxa from a much wider taxonomic range,
including the orders Cyclopoida (34.5%) and Cryptomonadales
(22.4%) and taxa belonging to the kingdoms Fungi (0.7%) and
Viridiplantae (1%).Within the Diptera, the BF primer pair picked
up mainly OTUs belonging to the Culicidae family (98%), most
of which were identified as belonging to the genera Culex (70%)
and the remainder as Anopheles (30%).

Comparison Between Adult Trapping and
eDNA Sampling
In general, the eCul primer pair performed better than the BF
primers, although overall similarity between the two approaches
was low. Using adult mosquito trapping, 38 mosquito taxa
(species and species complexes) were identified in the field. This
number of adult taxa was reduced to 25 with species complexes
(Table S3). Using eDNA, 34 mosquito OTUs (representing six
taxa) were picked-up with the eCul primers, and 10 mosquito
OTUs (representing two taxa) were picked-up with the BF
primers. A phylogenetic analysis of all sequences indicated that
the assigned identities were correct for both the eCul as the
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BF data (Figure S2). Our results show an OTU overlap of 28%
between the eCul data and adult trapping and 4% with the BF
data. The eCul primers were able to pick upmore than 50% of the
species detected with traps at two locations Satara (SatOut; 50%)
and Shingwedzi (ShiIn; 67%), and at two locations the similarity
was larger than 0.5 (Figure 4): Punda Maria (PunIn; 0.53) and
Shingwedzi (ShiIn; 0.53). The BF primers were unable to recover
more than 20% of the species detected with traps. The species that
were detected with eDNA were generally also the most abundant
species complexes in the traps (Culex pipiens species complex
and Culex poicilipes species complex; Table S3), indicating that
the eDNA method was more likely to pick up more abundant
and common (found at more locations) species than rare species
(Figure 5). Moreover, we observed a consistent dissimilarity
between mosquito communities inside and outside the park for
both sampling techniques, thus providing a first indication that
an eDNA approach can be used to detect a shift in mosquito
communities [average dissimilarity eDNA (eCul primer): 0.54
(± SE 0.04) vs. average dissimilarity adult trapping: 0.34 (± SE
0.11)]. The rarefaction analysis indicated a lack of sequencing
depth for both the eCul and the BF sequencing data (Figure S3).

DISCUSSION

In this study we developed an eDNA approach based on a family
specific primer and a local CO1 DNA reference database that
was able to detect the most abundant species observed with
traditional trapping methods. Even so, the eDNAmethod yielded
a much smaller number of species than the adult trapping, which
has implications for data interpretation and future work. We
elaborate on these challenges in the following paragraphs.

Primer Evaluation and Primer Comparison
In this study, presence of mosquito eDNA in South African
ponds was detected using the general macroinvertebrate BF1
primers from Elbrecht and Leese (2017b) and a novel eCul
mosquito primer. In contrast to other aquatic macroinvertebrate
species, like Odonata (unpublished data), the eDNA assessment
of mosquito species proved rather successful, which is likely a
result of the particular lifestyle of mosquitoes. Mosquito eDNA
concentration in the upper layer of the water may be higher
than that of most other freshwater macroinvertebrates, because
mosquitoes generally occur in high densities, spend a significant
part of their life cycle close to the water surface (where eDNA
samples are taken) and produce exuviae at the water surface
before emerging as an adult mosquito. For example dragonflies
and water beetles are generally less numerous and do not emerge
at the water surface (Foster and Soluk, 2004; Jäch and Balke,
2008) andmay therefore bemore difficult to detect. The detection
probability of our eCul primer was higher than when using the
general BF primers for freshwater invertebrate taxa (Elbrecht and
Leese, 2017b). This result highlights that the use of taxa-specific
primers with a narrow taxonomic range greatly improves the
probability of detection, and in general aligns with the idea that
a primer needs to be suited to a question (Elbrecht and Leese,
2017b). However, not all OTUs could be identified to the species
level, either because of shortcomings in the morphological or

molecular identification process. The morphological issues were
mostly restricted to a number of complexes within the genus
Anopheles (e.g., An. coustani s.l., An. gambiae s.l.) which is a
well-known problem (Gillies and Coetzee, 1987) and is normally
resolved using PCR-based identification (Fanello et al., 2002).
Challenges regarding the molecular identification were found for
a number of species complexes within the generaCulex andAedes
(Table S3), which indicates that, by itself, the CO1 barcoding
region might not be informative enough to differentiate between
closely related species within these complexes. One way to
overcome this issue in future studies is by targeting more than
one regions on the mosquito mitochondrial genome [e.g., CAD,
ITS, 16S (White et al., 1990; Reidenbach et al., 2009; Batovska,
2016; Schneider et al., 2016)]. Nevertheless, our results provide a
proof-of-principle that eDNA-based methods hold great promise
when it comes to using it for the detection of mosquito species
communities across a range of freshwater habitats.

Comparison Between Adult Trapping
and eDNA
Our eDNA approach provided only a subset of the species found
when using traditional trapping methods and identification on
morphology, with an overall moderate similarity between the
two approaches. Particularly species with lower abundance were
not readily retrieved using the eDNA method. Results of both
adult trapping and eDNA methods indicate that the mosquito
community composition differs between locations inside and
outside Kruger National park—which may be related to the
environmental differences resulting from the higher population
densities outside compared to inside the park. In our study, the
eDNA-based estimation of the community resulted in a greater
dissimilarity between inside and outside locations compared to
adult trapping. Possibly, this is due to missing the rarer species
that occur both inside and outside Kruger National Park.

There are four main explanations why the community
similarity between the two approaches differ. First, there is a
possibility that the eDNA based approach did detect the majority
of the mosquito species in the sampled water bodies, considering
that our eDNA approach assesses the larval community inside a
discrete water body whereas the adult trapping method assesses
the adult community around a given water body. This suggests
that the difference in community composition between eDNA
and traps may partly be the result of adult mosquitoes being lured
toward the traps from nearby breeding sites (e.g., nearby tires,
buckets, and other artificial habitats). This view is strengthened
by the absence of Ae. aegypti in the eDNA dataset, which was
abundantly present in the adult traps (Figure 5). This species
is known to breed almost exclusively in artificial habitats like
plastic containers and car tires (Simard et al., 2005). Although
this may partly explain the difference between the methods, there
is no direct way to test this hypothesis, because mosquito larval
communities were not sampled directly. Setting up controlled
experiments with mixtures of species with varying abundance
will likely resolve this issue.

Second, our sampling strategy might not be sufficient (30
spatially distributes subsamples of 25mL per water body),
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decreasing the probability of detection, since it is known that
eDNA is heterogeneously distributed (Nathan et al., 2014).
Setting up experiments with more subsamples that are not mixed
will likely resolve this issue.

Third, the effects of PCR-induced biases (e.g., sequencing
depth and primer bias) can decrease the probability of detection
(Elbrecht and Leese, 2015, 2017b), particularly for species with
a relatively low abundance (Elbrecht et al., 2017). Indeed, our
eDNA results suggest that our results may be suffering from a
lack of sequencing depth (Figure S3). An inadequate sequencing
depth can be one of the causes of missed species because
highly abundant reads of non-target species might mask low-
abundance sequences (Adams et al., 2013). Species belonging to
more abundant genera, like Culex and Mansonia were readily
detected whereas species belonging to less abundant genera like
Aedes and Anopheles were less likely to be picked up (Figure 5).
This picture was even more striking for the general freshwater
macroinvertebrate BF primer, which picked up onlyCulex species
belonging to the Culex pipiens species complex (Figure 5) with a
very high adult abundance. These results therefore suggest that
insufficient sequencing depth (Figure S3) might have reduced
the probability of detection of less abundant species. Also,
our results might suffer from the effects of overamplification
and stochastic effects inherent to mixed amplicon PCR. The
effects of overamplification can be mitigated by reducing the
number of cycles and the stochastic effects by increasing the
number of replicates from one to twelve. If the controlled
experiments proposed above indeed show that we are missing
the less abundant species, future work should address this gap
by adopting methods that produce higher number of reads or by
masking highly abundant species.

The effects of PCR induced biases (Elbrecht and Leese, 2015,
2017b) and PCR inhibitors [which environmental samples often
contain (Jane et al., 2015)] were not assessed during this study.
It is known that such biases and inhibitors may negatively
affect the probability of detection, particularly for species with
a relatively low abundance and/or biomass (Elbrecht and Leese,
2015; Elbrecht et al., 2017). This is further complicated by
the unknown persistence of mosquito eDNA under a range of
ecological conditions [e.g., biotic and abiotic degradation (Barnes
et al., 2014; Strickler et al., 2015)] in a system where eDNA is
spatially heterogeneously distributed (Nathan et al., 2014).

More work is therefore required to link the original amount
of template DNA (pre-PCR) and the distribution of reads (post-
PCR). The relative abundance of template DNA has to be
included, for the use of more comprehensive indices of diversity.
Current quantification methods (e.g., qPCR and ddPCR) are
unsuitable for mixed amplicon metagenomic approaches (Doi
et al., 2015). Fusion primers tagged with unique molecular
identifiers (UMIs) (Kivioja et al., 2012) may provide the tools
needed to address the effects of primer bias and PCR inhibition
in eDNA and metabarcoding samples.

Fourth, the limited availability of a comprehensive and
reliable reference database might reduce the detection
probability. Accurate species-level identification of mosquitoes
can be difficult, often leading to low taxonomic resolution, or
misidentifications (Haase et al., 2010). This in turn decreases
the accuracy of DNA-based approaches. During this study, not

all adult mosquito specimens could be identified to species
level (Table S2) and were clustered into species complexes
(Table S3). The in-silico test to assess if all taxa present in
the mock-community could be picked-up, yielded 38 OTUs,
although not all 38 taxa could be identified. This might be
due to insufficient taxonomic resolution of the CO1 target
region or misidentification of the adult specimen (Table S2).
There is likely room for improvement because it is unlikely
that all cryptic species were included in our reference library.
Furthermore, the underlying classification and phylogenic
relationship of mosquitoes remains largely unresolved (Harbach,
2007; Reidenbach et al., 2009; Wilkerson et al., 2015). This
highlights the need for taxonomic expertise to properly describe
species based upon morphological and molecular evidence
(Chan et al., 2014). More work is therefore needed to resolve the
underlying classification and phylogeny of mosquitoes, in order
to construct a comprehensive and reliable reference database.

Nevertheless, despite the unknowns listed above, the eDNA
method detected the most abundant species, thus indicating its
potential value in addition to the traditional sampling techniques,
and, as such, provide a meaningful addition to the existing
tool kit.

CONCLUDING REMARKS

This is the first study that applies an eDNA approach to
determine the community composition of mosquitoes, based
on water samples collected in the field. As such, it provides
a proof-of-concept that eDNA-based methods can be used
to better understand mosquito larval ecology and provides
promising steps toward an eDNA-based biomonitoring of
mosquito species communities. The comparison between adult
and larval communities shows that less abundant adult species
were not detected using our metabarcoding method. More
research is needed to evaluate whether this mismatch is due
to an overrepresentation of species from other nearby breeding
sites or due to an incomplete eDNA-based survey. To improve
differentiation between closely related species, eDNA-based
surveys of the complete mosquito community require the
identification of an additional informative region(s) on the
mosquito genome [e.g., CAD, ITS or 16S (Reidenbach et al.,
2009; Batovska, 2016; Schneider et al., 2016)]. Nevertheless, our
results highlight that environmental DNA holds the potential
to assess the larval community composition of mosquitoes
quickly and reliably, provided that (i) samples are taken in
accordance with the ecological context (i.e., life history traits),
and (ii) a comprehensive and reliable local reference database
and suitable primers are available. On the short term, given
its ability to determine mosquito community composition
based on larvae, eDNA is a promising complementary tool for
monitoring species communities alongside existing adult and
larval trapping methods.
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DNA-based methodology has proven to be a vital tool for ecosystem assessment

and monitoring. Increasingly, high-throughput approaches such as DNA metabarcoding

are being used to address more complex questions, including ecological network

analyses through machine learning. Despite the technological advances which allow for

such questions to be posed, there remains inherent limitations in studies utilizing DNA

metabarcoding, referring to environmental sample type targeted, geographical coverage

and lack of standardized field and laboratory procedures. Additionally, DNA reference

databases are lacking information from taxa, resulting in unidentified sequences, and

underrepresentation of some taxa. These issues need to be addressed to enable a more

representative approach to ecosystem monitoring to allow for detection and monitoring

of global ecosystem change.

Keywords: biomonitoring, DNA metabarcoding, next-generation sequencing, biodiversity, global, ecosystem,

biomes

To better determine the global effects that the changing climate and anthropogenic damage have
on the planets’ ecosystems requires a more complete understanding of the global biodiversity than
currently exists. However, this has been extremely difficult to ascertain and standardize due to
the large number of taxa and the diversity of different geographic localities. More confounding
is the reality that these natural and man-made changes are increasingly reshaping the global
biodiversity and the associated ecosystem processes and services they provide (Díaz et al., 2015;
Bohan et al., 2017). Unfortunately, to date, scientists studying the connections between biodiversity
and ecosystem change in specific ecosystems have been poorly equipped to measure these
relationships, and have tended to rely on the taxonomic identity and biomonitoring indicators
collected from other, and perhaps distant areas, which may or may not be appropriate or accurate
choices (Bohan et al., 2017).

DNA metabarcoding utilizes bulk samples such as soil, water, and benthos to extract DNA
(termed environmental DNA, eDNA) and generate sequence data for standard taxonomic marker
genes (e.g., DNA barcodes) via high-throughput sequencing (Porter and Hajibabaei, 2018b). By
streamlining and scaling-up biodiversity data generated, DNA metabarcoding provides the ability
to increase the amounts of assessment of the status of biodiversity associated with ecosystem
change that can occur across a wide range of global ecosystems (Ruppert et al., 2019). The
approach is cost-effective, easy to implement, and provides a robust and comprehensive dataset
of taxa from environmental samples, making DNA metabarcoding an important tool of choice
for future fundamental research and large-scale biodiversity monitoring programs (Zinger et al.,
2019). Moreover, DNA metabarcoding provides an important component to be used with the
ecological network analyses andmachine learning algorithms that are rapidly advancing to enhance
the capacity to detect global ecosystem change through biodiversity assessment (Bohan et al., 2017;
Cordier et al., 2019). The complex relationships between changes in nodes and links, and their
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impact on ecosystem functions should be understood at the
network level if we are to develop more robust biomonitoring
(Bohan et al., 2017). That said, there are still various barriers that
need to be overcome in order to accurately and effectively detect
such global ecosystem change, regardless of how quickly these
technologies and analyses advance.

DNA metabarcoding has been used to assess eukaryotic and
prokaryotic communities, to answer ecological questions such
as identifying soil microbiome communities associated with
nitrogen-fixing tree species in secondary tropical forests (McGee
et al., 2019), assessing bioindicators of river health through
macroinvertebrate biomonitoring (Hajibabaei et al., 2011; Dowle
et al., 2016) and investigating the effects of oil spills on coastal
biodiversity (Xie et al., 2018). Robust experimental design is
vital to ensure reproducibility and the ability to draw sound
ecological conclusions from the data (Fahner et al., 2018; Zinger
et al., 2019). Type I and Type II errors are common with
DNA-based biomonitoring, and to overcome this, firstly the
sampling design needs to be effective at capturing the full
taxonomic diversity or the ecological processes being investigated
(Zinger et al., 2019). Secondly, the laboratory and bioinformatic
workflow should be optimized to reduce sampling, extraction,
amplification, or sequencing bias (Fahner et al., 2018; Ruppert
et al., 2019; Zinger et al., 2019). For detecting biodiversity
changes, both the taxonomic reference database (for taxonomic
annotation of sequences), and environmental sample type (as
a proxy for biodiversity) need to be efficient and suitable for
detection of target taxa (Ruppert et al., 2019). Geographic
variability of environmental sample types also needs to be taken
into consideration, to provide the most inclusive representation
of taxa, which is vital for detecting biodiversity change within
different ecosystems.

Ecological network analyses are becoming an increasingly
popular approach to study how ecosystems respond to change
and the functional implications of these responses. Typically,
network analyses are able to link together species indicators,
gathered via DNA metabarcoding methods and others, and
functions/interactions to represent a totality of nodes as an
ecosystem model (Bohan et al., 2017; Laroche et al., 2018).
Network structures can elucidate environmental shifts from
stable ecosystem states (Beisner et al., 2003; Bohan et al., 2017;
Derocles et al., 2018) through changes that occur in species
composition and manifest in an ecological network. These
ecological network analyses can potentially explain and possibly
predict why stable states in ecology can persist over a period of
time (Carpenter et al., 2001; Scheffer et al., 2001; Beisner et al.,
2003; Bohan et al., 2017), in order to aid advancements in global
biomonitoring. Network analyses, combined with machine
learning algorithms, provide a standardized and sensitivemethod
at a high resolution to foster a general understanding of
the current state of ecosystem function across the globe
(Vacher et al., 2016; Bohan et al., 2017; Derocles et al., 2018).

However, even if we advance the technologies behind
these network and machine learning methods, the reference
databases for taxonomic identification, sample type, and
geographical location remain as the most influential limitations
to advancing an understanding of detecting global ecosystem

change. Next-generation biomonitoring involves the isolation of
DNA from samples including freshwater (Valentini et al., 2016;
Muha et al., 2017; Harper et al., 2019), salt/brackish water (Lobo
et al., 2017; Aylagas et al., 2018; Hansen et al., 2018), benthos
(Hajibabaei et al., 2011; Turner et al., 2015; Aylagas et al., 2016;
Robinson et al., 2019; Salonen et al., 2019), soil (Andersen et al.,
2012; Yoccoz et al., 2012; Fahner et al., 2016; McGee et al.,
2019), permafrost (Bellemain et al., 2013; Zielińska et al., 2017;
Zimmermann et al., 2017), passive biomass collection efforts such
as malaise traps (Morinière et al., 2016; Adamowicz et al., 2019),
and more recently air (Kraaijeveld et al., 2015; Ferguson et al.,
2019). Within these different types of environmental samples,
there are taxa which are either unique to a particular sample
type or can be detected across a breadth of environments,
which ultimately influences the ecological questions that can
be addressed with each type of environmental sample (Ruppert
et al., 2019). In a brief, robust Web of Knowledge hit search
from the last 5 years (2015–2019), using various search terms
to show where various sample types are popularly collected, or
sample type (i.e., water, soil, benthos), suggested that samples
may be substantially lacking in various geographical regions.
Overall, tropic∗ returned the greatest number of searches
for environmental DNA/eDNA/metabarcoding studies (n =

319), followed by Arctic/Antarctic/polar (n = 262), and then
temperate (n = 188; Table 1). What this brief hit search does
not highlight is the lack of geographic coverage within some
geographic regions. For example, despite temperate returning the
fewest searches for environmental DNA/eDNA/metabarcoding
studies, the range of sample localities is vaster than for
both the tropics and arctic/Antarctic/polar regions. Studies
returned for the temperate region include localities such
as Asia, United Kingdom, Canada and France, whereas for
Antarctic for example, the studies are concentrated around
remote field stations on the Antarctic peninsula. In terms of
sample type, soil environmental DNA/eDNA studies return
more searches in temperate locations, whereas permafrost
and benthos/sediment return a greater percentage of searches
from arctic/Antarctic/polar regions (Table 2; Figure 1). Water,
river/stream/pond/lake and seawater/marine return relatively
even percentage of searches across the three geographic regions
(Table 2; Figure 1).

Often, one type of environmental sample is collected in
an attempt to answer broad ecological questions regarding an
ecosystem, such as a watershed (Dickie et al., 2018). However,
this is problematic and can lead to bias in terms of taxa
recovered (Baird and Hajibabaei, 2012; Taberlet et al., 2018).
In addition to the geographic location of sample collection,
sample type is a large bottleneck in terms of taxa recovered
(Figure 2). For example, recent studies have found that eDNA
samples from freshwater are a poor substitute for bulk-benthos
samples for assessing macroinvertebrate community assemblages
(Macher et al., 2018; Hajibabaei et al., 2019). Furthermore, the
terminology surrounding the types of environmental sample is
inconsistent across the literature, with variations of “eDNA” and
“bulk-tissue DNA” used interchangeably (Dickie et al., 2018).
Often aquatic-based DNA monitoring samples are referred to
as “eDNA” (e.g., Valentini et al., 2016; Deiner et al., 2017),

Frontiers in Ecology and Evolution | www.frontiersin.org 2 September 2019 | Volume 7 | Article 33730

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


McGee et al. DNA Methods for Global Biomonitoring

TABLE 1 | Results of Web of Knowledge searches returned for different environmental DNA/eDNA/metabarcoding, search terms (found anywhere in the article),

associated with different sample types (water, river/stream/lake/pond, benthos/sediment, soil, seawater/marine, and permafrost), or geographic region (tropic*,

temperate, Arctic/Antarctic/polar).

First term Operator Second term Search results

Environmental DNA OR eDNA 13,873

eDNA OR Metabarcoding 1,931

eDNA SAME Metabarcoding 184

DNA SAME Metabarcoding 796

Tropic* AND Environmental DNA OR eDNA OR metabarcoding 319

Temperate AND Environmental DNA OR eDNA OR metabarcoding 188

Arctic ORAntarctic ORpolar AND Environmental DNA OR eDNA OR metabarcoding 262

River OR stream OR lake OR pond AND Environmental DNA OR eDNA OR metabarcoding 1,113

Benthos OR sediment AND Environmental DNA OR eDNA OR metabarcoding 551

Soil AND Environmental DNA OR eDNA OR metabarcoding 1,132

Seawater OR marine AND Environmental DNA OR eDNA OR metabarcoding 1,025

Permafrost AND Environmental DNA OR eDNA OR metabarcoding 24

Searches were conducted using Boolean Operators “OR” (find records containing any of the terms), “AND” (find records containing all terms) and “SAME” (terms that must occur within

the same sentence), restricted to the last 5 years (2015–2019).

TABLE 2 | Results of Web of Knowledge searches returned for different environmental DNA/eDNA/metabarcoding, search terms (found anywhere in the article),

associated with different sample types (water, river/stream/lake/pond, benthos/sediment, soil, seawater/marine, and permafrost) for each geographic region (tropic*,

temperate, Arctic/Antarctic/polar).

First term Operator Second term Operator Third term Search results

Tropic* AND Environmental DNA OR eDNA OR metabarcoding AND Water 78

AND Environmental DNA OR eDNA OR metabarcoding AND river OR stream OR lake OR pond 51

AND Environmental DNA OR eDNA OR metabarcoding AND Benthos OR sediment 21

AND Environmental DNA OR eDNA OR metabarcoding AND Soil 42

AND Environmental DNA OR eDNA OR metabarcoding AND Seawater OR marine 50

AND Environmental DNA OR eDNA OR metabarcoding AND Permafrost 0

Temperate AND Environmental DNA OR eDNA OR metabarcoding AND Water 49

AND Environmental DNA OR eDNA OR metabarcoding AND River OR stream OR lake OR pond 25

AND Environmental DNA OR eDNA OR metabarcoding AND Benthos OR sediment 10

AND Environmental DNA OR eDNA OR metabarcoding AND Soil 38

AND Environmental DNA OR eDNA OR metabarcoding AND Seawater OR marine 34

AND Environmental DNA OR eDNA OR metabarcoding AND Permafrost 1

Arctic OR Antarctic OR polar AND Environmental DNA OR eDNA OR metabarcoding AND Water 73

AND Environmental DNA OR eDNA OR metabarcoding AND River OR stream OR lake OR pond 51

AND Environmental DNA OR eDNA OR metabarcoding AND benthos OR sediment 45

AND environmental DNA OR eDNA OR metabarcoding AND Soil 49

AND Environmental DNA OR eDNA OR metabarcoding AND Seawater OR marine 66

AND Environmental DNA OR eDNA OR metabarcoding AND Permafrost 8

Searches were conducted using Boolean Operator “AND” (find records containing all terms) and “OR” (find records containing any of the terms), restricted to the last 5 years (2015–2019).

whereas sediment/benthos or soil samples are termed “bulk-
tissue DNA” (Hatzenbuhler et al., 2017; Hajibabaei et al., 2019;
Harper et al., 2019), despite these types of sample all referring
to DNA which is isolated from an environmental sample (Dickie
et al., 2018). This lack of consistency is particularly challenging
when attempting to amalgamate literature and compare studies
from different research groups and for effectively communicating
results of DNA-based studies to non-specialists. Going forward,
it would be greatly beneficial to have a consistent and shared
ontology across the environmental DNA and metabarcoding

community in terms of environmental sample type. Although
eDNA could provide an all-encompassing term for analysis
of DNA from environmental samples, it is important to
provide complementary information about sample type (e.g.,
soil, water, and benthos) and technology used for detection in
all scientific/technical communication. To fully investigate the
current uses of DNA-based terminology, an in-depth review
would be necessary, which is beyond the scope of this paper.
Ultimately, different types of environmental samples, with their
varying associated terminologies, are likely to reflect specific
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FIGURE 1 | Histogram displaying the percentage of total results returned (tropic*: n = 242, temperate: n = 157, arctic/Antarctic/polar: n = 292; based on Table 2) for

each sample type search term (water, river/stream/lake/pond, benthos/sediment, soil, seawater/marine, and permafrost) for each geographic region.

FIGURE 2 | Infographic displaying the “bottlenecks” associated with global

DNA metabarcoding data generation.

communities of taxa based on factors such as life histories, season
and geographic location (Thomsen and Willerslev, 2015; Dickie
et al., 2018), and if global ecological questions are to be addressed
using next-generation biomonitoring, sample design will need to
incorporate the processing of multiple sample types for accurate
assessments of biodiversity.

In addition, there is a substantial degree of variation within
metabarcoding as to the sequencing technology implemented
for data generation (Bleidorn, 2016; Evans et al., 2016; Elbrecht

and Steinke, 2019; Singer et al., 2019; Zinger et al., 2019). As
of 2015, there were 13 different PCR-based NGS technologies
(Pavan-Kumar et al., 2015), with Illumina R© MiSeq currently
the prominent NGS platform for processing biomonitoring data
(Bleidorn, 2017). In terms of sequencing, different environmental
sample types require varying degrees of sequencing breadth
and depth (Porter and Hajibabaei, 2018b; Singer et al., 2019).
Tropical forest soils are considered to be one of the most diverse
ecosystems on the planet, in comparison to alpine mountain
lakes, which have vastly different biological richness (Schluter
and Pennell, 2017; Dumbrell, 2019). For example, two separate
studies looking at microbial community structure in tropical
soils and alpine lakes, produced a large difference in sequence
reads for the two environments (tropical soil 16s: 1.3 million;
alpine lake: 184,273; Filker et al., 2016; Dopheide et al., 2019).
In addition, detection of whole communities as opposed to
fewer taxa will require a greater sequencing depth (Porter
and Hajibabaei, 2018b). Similar to environmental sample type,
the sequencing process of DNA-based biomonitoring is often
referred to as “NGS,” “High-throughput sequencing (HTS),”
and “Second-generation sequencing (2GS)” (Dickie et al., 2018;
Divoll et al., 2018; Zinger et al., 2019); this varying use of
terminology again adds another level of inconsistency to DNA-
based biomonitoring. Referring to a consistent term for this
sequencing technique, similar to the ontology discussed for
sample terminology, would be beneficial. As many companies,
such as illumina R©, which produce sequencing equipment,
often refer to this sequencing technology as “next-generation
sequencing,” therefore it would be logical to maintain consistency
with this term (von Bubnoff, 2008; Quail et al., 2012). As with
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sample terminology, it is necessary to provide complementary
information regarding the technological processes (i.e., high-
throughput targeted sequencing). Since January 2016, there have
been a few publications referring to the use of Illumina R©’s
newest high-capacity platform, NovaSeq (Singer et al., 2019)
in metabarcoding studies, which have highlighted the higher
performance of this new technology in comparison to both the
HiSeq and MiSeq, with NovaSeq detecting 40% more metazoan
families in metabarcoded sea water samples in comparison to
the MiSeq (Singer et al., 2019). The implementation of new
technology brings to light the need for evaluating available
technologies to address biomonitoring needs for a given system
with the main limitation being the taxonomic coverage achieved
per sample (Divoll et al., 2018). For example, MiSeq may provide
optimal solution to tackle biodiversity in freshwater systems or
specific taxonomic assemblages whereas NovaSeq would be a
better platform for more complex situations such as oceanic
samples. Suboptimal use of data generation platforms could
lead to misrepresentation of taxonomic information and can
be problematic when considering the implications of this on
the ecological conclusions already having been drawn from
metabarcoding-based biomonitoring data (Zinger et al., 2019).

Environmental sample choice and implementation of
different sequencing platforms are not the only sources of taxa
detection bias (Figure 2). There are numerous bioinformatic
pipelines for processing samples, which vary greatly across
studies (Alberdi et al., 2018) and appropriate clustering/filtering
thresholds can lead to mis-classification and thus bias in the
taxa detected (Hajibabaei et al., 2016; Alberdi et al., 2018; Zinger
et al., 2019). In addition, the most prominent bottleneck in
terms of recovering present taxa in an environmental sample
is incomplete DNA reference databases (Figure 2; Zaiko et al.,
2015; Elbrecht et al., 2017; Stat et al., 2017). Commonly used,
both the BOLD (Barcode of Life Datasystem) and GenBank
databases regularly lack reference sequences and/or have
conflicting taxonomic assignments for the species (Ammon
et al., 2018). Reference database incompletion causes inability
to identify all DNA sequences in a sample and means some
taxonomic groups are underrepresented (Creer et al., 2010;
Ratnasingham and Hebert, 2013; Porter and Hajibabaei, 2018a),
which highlights the current substantial gap in global biodiversity
knowledge (Zaiko et al., 2015). If DNA-based biomonitoring is
to be an effective, reliable tool for assessing biodiversity on a
global scale, efforts need to be primarily concentrated toward
better curation and updating of DNA reference records, as well
as continued barcoding of taxonomically identified specimens
to improve the quality and quantity of information in DNA
databases (Hajibabaei et al., 2016; Elbrecht et al., 2017; Stat et al.,
2017; Zinger et al., 2019).

In essence, what will dominate the database in terms of
sequence data for various biota will be based on what has been

collected from the temperate areas more so than the tropics
and polar regions. Thus, for example, how will soil scientists
(and others) be able to effectively identify organisms in their
soil samples based on databases from other regions? More
importantly, some of these areas that need to be further sampled
are those that are experiencing drastic intensities of climate
pattern changes. This also describes the need for more seasonal
studies over periods of time to assess the variability in climate
patterns across the globe. If we are to detect ecosystem change
globally, more comprehensive work involving biomonitoring and
DNAmetabarcoding/eDNAwill be needed to generate consensus
data, generate the metadata, and start analyzing trends across
the globe.

With advancing technologies and methodologies such as
implementing machine learning and neural networks pertaining
to ecological status and modeling, as has been described
elsewhere (Díaz et al., 2015; Bohan et al., 2017; Derocles
et al., 2018), we still need to increase the information
in a database to identify particular organisms of interest
and from more geographical locations across the globe,
for biomonitoring, and more robust experimental designs
rather than straight survey-based approaches to draw sound
ecological conclusions (Zinger et al., 2019). Yet, if sample types
are inherently variable due to geographical location and/or
sample type across the globe, how can we ever expect these
taxonomic databases to accurately reflect a global perspective
of ecosystem, in order to effectively and accurately detect
global ecosystem change. By collecting samples from more
geographical locations where the representation is lacking,
collecting a wider array of sample types, and constructing
the replicated ecological networks of ecological interactions,
together, will provide useful standards of global ecosystem
information, dramatically enhancing the ability to assess the taxa
within global ecosystems, and understanding how these respond
to climate change and other forms of ecosystem damage. We
propose that combining the use of these technologies would
greatly enhance the capacity to better predict how various
ecosystems respond to environmental change at local, regional
and global levels.
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Recent years provided intense progression in the implementation of molecular techniques

in a wide variety of research fields in ecology. Biomonitoring and bioassessment can

greatly benefit from DNA metabarcoding and High-Throughput Sequencing (HTS)

methods that potentially provide reliable, high quantity and quality standardized data

in a cost- and time-efficient way. However, DNA metabarcoding has its drawbacks,

introducing biases at all the steps of the process, particularly during bioinformatics

treatments used to prepare HTS data for ecological analyses. The high diversity

of bioinformatics methods (e.g., OTU clustering, chimera detection, taxonomic

assignment) and parameters (e.g., percentage similarity threshold used to define OTUs)

make inter-studies comparison difficult, limiting the development of standardized and

easy-accessible bioassessment procedures for routine freshwater monitoring. In order to

study and overcome these drawbacks, we constructed four de novo indices to assess

river ecological status based on the same biological samples of diatoms analyzed

with morphological and molecular methods. The biological inventories produced are

(i) morphospecies identified by microscopy, (ii) OTUs provided via metabarcoding and

hierarchical clustering of sequences using a 95% similarity threshold, (iii) individual

sequence units (ISUs) via metabarcoding and only minimal bioinformatical quality

filtering, and (iv) exact sequence variants (ESVs) using DADA2 denoising algorithm. The

indices based on molecular data operated directly with ecological values estimated for

OTUs/ ISUs/ ESVs. Our study used an approach of bypassing taxonomic assignment, so

bias related to unclassified sequences missing from reference libraries could be handled

and no information on ecology of sequences is lost. Additionally, we showed that the

indices based on ISUs and ESVs were equivalent, outperforming the OTU-based one in

terms of predictive power and accuracy by revealing the hidden ecological information of

sequences that are otherwise clustered in the same OTU (intra-species/intra-population

variability). Furthermore, ISUs, ESVs, and morphospecies indices provided

similar estimation of site ecological status, validating that ISUs with limited
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bioinformatics treatments may be used for DNA freshwater monitoring. Our study is

a proof of concept where taxonomy- and clustering-free approach is presented, that

we believe is a step forward a standardized and comparable DNA bioassessment,

complementary to morphological methods.

Keywords: bioassessment, biomonitoring, diatoms, high-throughput sequencing, metabarcoding

INTRODUCTION

In the past several decades, use of bioindicator organisms has
been widely adopted in order to monitor, maintain or develop
the quality of water bodies worldwide. The permanently evolving
field of freshwater ecology made freshwater biomonitoring an
efficient tool, incorporated in national and international water
management frameworks like the Clean Water Act (CWA; U.S.
Congress, 1972) or the Water Framework Directive (WFD;
European Commission, 2000).

The EU WFD uses four groups of organisms (i.e., Biological
Quality Elements—BQEs) to assess ecological quality by
comparing the community structure of the impacted sites to the
community structure of a reference site considered not to be—
or slightly—affected by anthropogenic alterations (Pardo et al.,
2012). Experts faces several challenges depending on the BQE
they are working on but they are all limited by the following
factors: time consuming and costly sampling and preparation
procedures, differences in expert knowledge and equipment for
taxa identification, thus disharmony in taxa inventories among
laboratories (Kahlert et al., 2012).

The recent intense development of DNA metabarcoding
and High-Throughput Sequencing (HTS) techniques has set
a new milestone in biomonitoring (Baird and Hajibabaei,
2012; Leese et al., 2016; Keck et al., 2017). Instead of the
identification based on morphological features, this technique
employs standard gene markers to identify taxa-specific
sequences in the organism’s DNA, serving as a barcode
(Hebert et al., 2003). This method allows the simultaneous
identification of multiple taxa from multiple environmental
samples (Taberlet et al., 2012), being more time- and cost-
effective than the classical methods, providing a fine-scale
taxonomic characterization of communities, often revealing
hidden diversity (Lindeque et al., 2013).

However, in order to use metabarcoding techniques as a
routine biomonitoring tool, the standardization of the method
is required. Extensive studies have been produced analyzing
and suggesting solutions for the biases at each step of the
metabarcoding process including the sampling, DNA extraction
(Vasselon et al., 2017a), choice of the marker gene (Kermarrec
et al., 2013) or the choice of the applied HTS technology (Loman
et al., 2012; Shokralla et al., 2012). A further bias that can hamper
the comparability among different analyses is the large variety
of bioinformatic pipelines used to process HTS data. One step
particularly critical is the clustering of the raw sequence data into
operational taxonomic units (OTUs).

Molecular OTUs are widely used to describe microbial
communities using HTS amplicon sequencing as proxies for

species, generally using the 97% similarity threshold proposed
initially for the 16S rRNA gene by Stackebrandt and Goebel
(1994). Sequence clustering aims to reduce the noise in
the data and provide a granularity close to that of the
species delimitation. Clustering with a high sequence similarity
threshold to create OTUs increases the risk of giving ecological
sense to sequence errors and artifacts (Chen et al., 2013).
However, Edgar (2018) proposed a recent update of this
threshold to ∼ 99–100% and several studies advocate the
use of denoised DNA reads to avoid the biases linked to
the choice of the clustering algorithm and the similarity
threshold (Tikhonov et al., 2015; Edgar, 2016; Callahan
et al., 2017). Exact Sequence Variant (ESV) are considered as
unique DNA reads with biological meaning and they offer
several advantages for community analyses compared to OTUs,
including computational tractability, reproducibility of analysis
and the possibility to perform meta-analyses from different
studies (Callahan et al., 2017). Although the use of ESVs is an
important step toward a better characterization of intraspecific
genetic diversity (Elbrecht et al., 2018; Forster et al., 2019), they
still rely on denoising algorithm that may introduce biases and
lead to non-reproducible results (Nearing et al., 2018). In order
to have the most reproducible bioinformatic treatments, one can
also work with the so-called Individual Sequence Units (ISUs),
composed by ESV and erroneous sequences that correspond
to PCR and sequencing errors, thus applying strictly limited
bioinformatic filters.

Biological indices based on the microalgae group, diatoms
(Bacillariophyta phylum), are frequently used by scientists and
environmental managers to assess the ecological status of
ecosystems and their response to local pressures and global
change. Numerous diatom indices are based on a simple
equation that weights the ecological optimum of each detected
species by its abundance and ecological tolerance (Zelinka
and Marvan, 1961). In traditional indices, species ecological
profiles (optimum and tolerance) are often directly obtained
from a large set of data by using simple statistical descriptors
of location (e.g., weighted mean) and dispersion (e.g., weighted
standard deviation) along a pollution gradient. Interestingly, the
morphospecies as a taxonomic unit of the traditional indices
can be replaced by molecular taxonomic units, allowing to train
a new type of biological indices, the so-called taxonomy-free
indices (Apothéloz-Perret-Gentil et al., 2017; Tapolczai et al.,
2019). So far, taxonomy-free indices have proved to be an
efficient strategy to keep biological information carried by OTUs
whose taxonomic assignment is otherwise not possible because
of the incomplete reference library. Here, we propose to apply a
similar strategy on ISU and ESV data, in order to limit the bias
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associated to OTU clustering and to improve the reproducibility
and standardization of biomonitoring indices.

In our study, we compare different strategies to use biological
data and provide quality assessment indices. Four diatom
indices were developed, based on the ecological optimum
and tolerance of morphospecies/OTUs/ISUs/ESVs calculated
along an integrated environmental gradient, using the classical
Zelinka-Marvan equation (1961). The first index is based on
taxa inventory obtained via the microscopic identification of
morphospecies and their relative abundance. The second index
is based on OTU inventory without taxonomic assignment,
obtained via DNA metabarcoding and hierarchical de novo
clustering with 95% sequence similarity. The third strategy tested
was the development of an index using ISUs. In this case no
taxonomic assignment, nor clustering into OTUs were used. The
last strategy used the DADA2 denoising algorithm to select ESVs
from ISUs.

We hypothesize that by avoiding taxonomic assignment,
clustering and denoising of ISUs, relevant sources of biases
in the metabarcoding process are removed. This strategy is a
step toward a standardized metabarcoding-based bioassessment
without losing the indicator efficiency of the quality index and
enabled to propose an easy transferable bioinformatics tool for
stakeholders in charge of freshwater management.

MATERIALS AND METHODS

Study Site and Sampling Network
The routine survey of the WFD monitoring network is carried
out by French offices responsible for the monitoring and water
quality assessment of rivers, including national agencies, and
private consultancies. They are in charge of the chemical
and biological surveys following the WFD recommendations,
meaning that they realize the acquisition of physico-chemical
parameters and the description of benthic diatom assemblages for
each site.

Based on those available information, among the hundreds of
French river sites annually surveyed for water quality assessment
in the context of the WFD, 76 sites were selected from the
2016 national monitoring campaign following several criteria :
(i) sites showed a gradient of pressure (e.g., organic pollution,
turbidity, nutrients, etc.) allowing to obtain a water quality
gradient from pristine to polluted conditions, (ii) sampling sites
are distributed within the country (different river types), far
enough to limit potential effects of non-independence among
sampling sites during quality index construction, (iii) benthic
diatom samples are available to perform morphological and
molecular approaches and (iv) information on physico-chemical
parameters is available for all the samples.

Physical and Chemical Parameters
For each site, environmental data were extracted from the French
national database “Naïades” (http://www.naiades.eaufrance.fr/)
over a period of 70 days (60 days preceding and 10 days
following the biological sampling). For each environmental
variable, we computed the mean value of all the records
available during this time window. It resulted in a table

of 76 rows (samples) and 15 columns (variables) without
missing values. The environmental parameters kept are dissolved
oxygen (O2), oxygen saturation (O2 sat), pH, Conductivity,
nitrate (NO−

3 ), nitrite (NO
−

2 ), ammonium (NH+

4 ), total Kjeldahl
nitrogen (TKN), total phosphorus (TP), phosphate (PO3−

4 ),
temperature (T), total suspended solids (TSS), total organic
carbon (TOC), biological oxygen demand (BOD5), and turbidity
(Turb) (Table S1).

Diatom Sampling, Biofilm Sample
Preparation, and Morphological Analysis
For each site, the biofilm containing benthic diatom communities
was sampled from at least five submerged stones collected
from the lotic parts of the rivers following European standards
(European Committee for Standardization, 2016). The upper
surface of the stones were scrubbed using a clean toothbrush
at each sampling site and mixed into a tray. The samples
were homogenized by manual shaking and divided into two
subsamples, one for microscopic identification performed by
national offices and one sent to our lab for molecular analysis.
The subsamples were transferred into 50mL Falcon tubes and
preserved using 96% ethanol for a final ethanol concentration
of at least 70% and stored at room temperature under dark
conditions until preparation for morphological analysis and
DNA extraction (performed within 6 months).

For the microscopic analysis, diatom samples were treated
using 40% H2O2 and HCl according to the European standard
(European Committee for Standardization, 2014). Permanent
slides were prepared by mounting the cleaned diatom samples.
Morphological analysis was carried out using microscope with
1,000x magnification objective. A minimum of 400 diatoms
valves were determined using up to date identification literature.

Diatom DNA Metabarcoding
The preserved biofilm samples were homogenized by manual
shaking and a volume of 2mL of each sample was used as
starter for DNA extraction. The samples were first centrifuged
at 17,000 g during 30min in order to remove the supernatant
containing ethanol. Total genomic DNA was extracted from
the remaining pellet using the Sigma-Aldrich GenEluteTM-
LPA DNA precipitation protocol as described previously (e.g.,
Vasselon et al., 2017a) in a final elution volume of 30 µL.

PCR amplification of diatom communities was performed by
targeting a short fragment (312 bp) of the Ribulose Bisphosphate
Carboxylase Large subunit (rbcL) plastid gene, a DNA marker
commonly used for diatom metabarcoding on lake and river
samples (Rivera et al., 2018; Bailet et al., 2019; Chonova et al.,
2019; Mortágua et al., 2019). The primer pair used to amplify
the 312 bp rbcL region corresponds to the equimolar mix
of 3 forward primer (Diat_rbcL_708F_1, Diat_rbcL_708F_2,
Diat_rbcL_708F_3) and 2 reverse primers (R3_1, R3_2) as
described in Vasselon et al. (2017b). Forward and reverse primers
carry the 5′-CTTTCCCTACACGACGCTCTTCCGATCT-3′ and
5′-GGAGTTCAGACGTGTGCTCTTCCGATCT-3′ tails used to
prepare Illumina libraries with a dual-step PCR approach (PCR1
and PCR2). For the PCR1, each DNA sample was amplified in
triplicate in a final volume of 25 µL using the tailed rbcL primers
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and the Takara LA Taq R© polymerase with PCR1 reactionmix and
conditions detailed in the Table S2.

The 3 PCR1 replicates prepared for each DNA sample were
pooled together and sent to the “GenoToul Genomics and
Transcriptomics” facility (GeT-PlaGe, Auzeville, France) which
performed: (i) the purification of PCR1 amplicons; (ii) the PCR2
amplification using PCR1 purified amplicon as template and
Illumina-tailed primers allowing to add dual-index specific to
each sample; (iii) the preparation of the final pool corresponding
to an equimolar mix of the 76 PCR2 dual-indexed amplicons; (iv)
the sequencing of the final pool on an Illumina MiSeq platform
using the V3 paired-end sequencing kit (250 bp× 2).

Bioinformatics
Initial Bioinformatic Steps for ISUs and OTUs
The GeT-PlaGe sequencing platform assembled the MiSeq
paired-end reads into full-length DNA sequences (paired
sequences overlap >140 bp and mismatches <0.1%) and
performed the demultiplexing of the 76 samples, providing
1 fastq file per sample. All the bioinformatics treatments
were performed using Mothur software v1.39.5 (Schloss et al.,
2009). Initial bioinformatic steps were applied to keep good
quality DNA reads using the trim.seqs() command and the
following parameters: a sequence length of 263 ± 10 bp
(rbcL barcode length without primers), a Phred quality score
≥23 over a moving window of 25 bp, 0 ambiguities (“N”),
a maximum homopolymer length of 8 bp, a maximum of 1
mismatch in the primer sequence. Remaining DNA reads were
dereplicated into ISUs with the unique.seqs() command and
the resulting files processed with two distinct bioinformatic
strategies in order to prepare the final ISU and OTU tables
used for the construction of water quality indices, as shown in
Figure 1.

Preparation of ISU Table
Even if the rbcL primers used for metabarcoding were designed
to be diatom specific, the presence of degenerated bases in
the primer sequence may introduced non-target organism
amplification (Linhart and Shamir, 2002) In order to perform
the most objective comparison between diatom morphospecies
and ISUs water quality indices developed in this study, “non-
diatom” ISUs must be removed as they can interfere, positively
or negatively, on the predictive power of the ISU index. Thus,
we used the classify.seqs() command (default parameters,
cutoff = 75%) with the “diat.barcode” reference database
(version v7: 23-02-2018, https://doi.org/10.15454/HYRVUH)
to provide a taxonomy to each ISU and we applied the
remove.lineage() command to remove the non-Bacillariophyta
(phylum) ISUs (“Bacillaryophyta_unclassified” ISUs were
also discarded).

The ISU abundance distributions along the environmental
gradient were used to develop the ISU index (Idx_ISU), meaning
that ISUs with low abundance and rare ISUs were automatically
removed during the index development [see section Calculation
of diatoms indices (Idx_morph, Idx_OTU, Idx_ISU, Idx_ESV)].
We decided to use the split.abund() command in order to keep
only ISUs represented by at least 50 reads among the 79 samples.
By this way, spurious ISUs were removed and the computing

power required to create Idx_ISU was reduced, without affecting
its efficiency.

Preparation of OTU Table
Using the files produced after the unique.seq() command
(see section Initial Bioinformatic Steps for ISUs and OTUs),
OTU table was created following the bioinformatic workflow
detailed by Vasselon et al. (2017a) with some adjustments:
(i) ISUs were aligned using the align.seqs() command and
poorly aligned reads were removed using the command
screen.seqs(start=28, optimize=end, criteria=90); (ii) we used
the pre.cluster() command to denoise sequencing errors by
preclustering rare ISUs with related more abundant ones (1
bp threshold); (iii) detection of chimeras was performed using
the chimera.vsearch() command; (iv) removal of “non-diatom”
ISUs was performed as presented above (section Preparation
of ISU Table) using the classify.seqs() and the remove.lineage()
commands; (v) ISUs represented by <3 reads were removed
with the split.abund() command; (vi) a similarity distance
matrix of ISUs was created with the command dist.seqs();
(vii) OTU clustering was performed using the cluster.split()
command applying the furthest neighbor method with a 95%
similarity threshold.

Preparation of ESV Table
The software package DADA2 was used to infer ESVs from
demultiplexed MiSeq reads (one R1 and one R2 fastq file per
sample) following the methods described by Callahan et al.
(2016). The DADA2 pipeline adapted to diatom metabarcoding
data and applied in this study is available on Github (https://
github.com/fkeck/DADA2_diatoms_pipeline) and includes : (i)
for each sample, primers sequences are removed from R1
and R2 reads using cutadapt (Martin, 2011); (ii) the R1
and R2 reads are truncated to 200 and 170 nucleotides,
respectively in order to remove last poor quality nucleotides;
(iii) R1 and R2 reads with 0 ambiguities (“N”) and a
maximum of expected errors (maxEE) of 2 are conserved; (iv)
after dereplication of R1 and R2 reads into ISUs, ESVs are
selected based on the error rates model determined by the
DADA2 denoising algorithm and paired reads merged into
one sequence; (v) chimeric ESVs are removed; (vi) ESVs are
taxonomically assigned using the DADA2 default parameters
with an adapted version of the “diat.barcode” reference database
(available on https://www6.inra.fr/carrtel-collection/Barcoding-
database/Database-download); (vii) finally, a taxonomic filtering
is applied in order to remove the non-Bacillariophyta (phylum)
ESVs (“Bacillaryophyta_unclassified” ESVs were also discarded).

Correlation Between Community Data Tables
Prior to indices development, the correlation between
morphospecies, OTU, ISU and ESV tables was assessed
using the Procrustes superimposition method (Peres-Neto and
Jackson, 2001). Non-metric multidimensional scaling (NMDS)
on Bray-Curtis distances was used to derive a three-dimensional
configuration of each table. The pairwise matching between
NMDS ordinations was then measured using Procrustes
correlation and tested by permutations (999 repetitions).
Analyses were conducted with the metaMDS and protest
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FIGURE 1 | Overview of the analyses. The diagram indicates the steps to compute the four indices based on microscopic data (Idx_morph) and on metabarcoding

data (Idx_OTU, Idx_ESV, and Idx_ISU).

functions of the R package “vegan” (R Development Core Team,
2008; Oksanen et al., 2016).

Index Development
Definition of the Reference Pressure Gradient
Principal component analysis (PCA) was executed using the
prcomp function in R (Venables and Ripley, 2002) to study
the structure of the 76 samples and their relationship to the
environmental variables (Figure 2). Logarithmic transformation
was applied on the environmental variables to ensure the normal
distribution of data required for the PCA. The first principal
component (PC1) represents the reference pressure gradient,

i.e., the position of the samples along this gradient represent
their reference quality. These values were then multiplied by
−1 and then calibrated on a scale from 0 to 20, so that higher
values representing better reference quality. Multiplication by−1
was necessary because higher values on the original PC1 were
associated with high concentration of the variables, referring to
“poor” quality.

Calculation of Diatoms Indices (Idx_morph, Idx_OTU,

Idx_ISU, Idx_ESV)
The development of the four diatom indices followed the
methodology described in Tapolczai et al. (2019). Both
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FIGURE 2 | Principal component analysis of the environmental variables. The PCA biplot (A) shows the projection of the sites (black dots) and the variable loadings on

the first two principal components (PC1 and PC2). The dotplot (B) indicates the correlation (Pearson’s r) of each environmental variable with the first principal

component (PC1) that was used as the reference gradient for the indices. High and low values indicate strong positive and negative correlation respectively, while

values close to zero indicate weak correlations between PC1 and the given parameter.

morphospecies inventory obtained via microscopic identification
and sequence reads inventory obtained via HTS were
transformed into relative abundances in order to ensure a
comparable quantification among samples.

The four datasets according to the biological inventories
(morphospecies, OTU, ISU and ESV lists) were randomly divided
into: (i) a training datasets containing the randomly selected
75% of the samples, including their position along PC1 and
their associated morphospecies (and OTUs, ISUs, ESVs) relative
abundances; (ii) a test dataset containing the remaining 25%
of the samples. Therefore, the indices could be tested on
an independent dataset that was not included in the index
development. This cross validation approach to randomly select
training and test datasets was executed 100 times to measure the
average and standard deviation of the values of the four indices at
each sample instead of a singlemeasure that could bias the results.
This resulted in 100 indices tested for each of the four index types
(Idx_morph, Idx_OTU, Idx_ISU, Idx_ESV) (400 indices in total).

Ecological profiles of the morphospecies, OTUs, ISUs, and
ESVs in the training datasets were defined by modeling
their relative abundances in the samples along PC1. Rare
morphospecies, OTUs, ISUs, and ESVs were removed from the
data tables and only those present in more than 5% of the
samples in the training dataset were kept. This arbitrary limit,
well-established in previous studies (Stenger-Kovács et al., 2007;
Bere et al., 2014; Tapolczai et al., 2019), was necessary to keep a
minimum number of samples based on which robust ecological
profiles are ensured.

Weighted averages and standard deviations of the profiles
were calculated to estimate the ecological optimum (s) and the

tolerance (v) values. The Zelinka-Marvan equation (Zelinka and
Marvan, 1961) was adapted to our data to define the four indices:

Idx_morph/OTU/ISU/ESV =

∑n
j = 1 ajsjvj

∑n
j = 1 ajsj

where Idx_morph/OTU/ISU/ESV are the indices based on
morphospecies, OTUs, ISUs, and ESVs, respectively; aj is the
relative abundance of morphospecies/OTU/ISU/ESV j; sj is the
sensitivity or optimum of morphospecies/OTU/ISU/ESV
j; and vj is the indicator value or tolerance of
morphospecies/OTU/ISU/ESV j in the sample. Sensitivity
and indicator values for each morphospecies, OTUs and ISUs
were calculated using their abundance values plotted as functions
of the samples’ PC1 values. The two ecological values (sensitivity
and indicator) comprised a database that was used together with
the relative abundance values of the morphospecies, OTUs, ISUs,
and ESVs in the samples for which the indices were calculated.
Data of the training dataset was used to define these profiles.
Idx_morph, Idx_OTU, Idx_ISU, and Idx_ESV for each sample
in the test dataset were calculated and correlated with their
corresponding PC1 values.

The R script used for the index development and data analysis
is uploaded and freely available on Zenodo repository (https://
doi.org/10.5281/zenodo.3463043).

Index Comparison
In order to assess and compare the performance of the four
quality indices developed, several metrics were used. Correlation
coefficients of the linear models fitted on mean data of quality

Frontiers in Ecology and Evolution | www.frontiersin.org 6 October 2019 | Volume 7 | Article 40941

https://doi.org/10.5281/zenodo.3463043
https://doi.org/10.5281/zenodo.3463043
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Tapolczai et al. Innovative Tools in Diatom Biomonitoring

values per sites were compared and significance tests were
performed using the “cocor” package in R (R Development Core
Team, 2008; Diedenhofen and Musch, 2015). The residuals of
the four regression models were compared withWilcoxon signed
rank test and Bonferroni correction (Hollander andWolfe, 1973)
in order to measure the prediction performance of the models.
Stability of the indices were estimated by comparing the standard
deviation of index values per sites originated from the 100
iterations to select training and test datasets. It was tested with
Wilcoxon signed rank test with Bonferroni correction.

RESULTS

Reference Gradient
The first principal component of the PCA (Figure 2A),
explaining the 47.01% of the total variation in the dataset was
used as the reference gradient for the indices. Poor quality
is associated with those parameters indicating higher nutrient
concentration, organic matter concentration, turbidity. Good
quality is represented by well-oxygenated waters. pH, oxygen
concentration, oxygen saturation and conductivity are the
main factors responsible for the distribution of sites on the
second principal component, explaining the 14.84% of the total
variation. All environmental variables correlated significantly
with PC1 (p < 0.05) with Pearson’s correlation coefficients (r)
presented on Figure 2B.

Morphological Identification
A total of 355 diatom taxa were identified via microscopic
analysis from which 321 at species level. The average number of
taxa identified per sample was 28 (SD= 10) with a minimum of 4
and with a maximum of 56. Based on our criteria to remove rare
taxa, the number of taxa kept in the training datasets and used for
index development varied between 110 and 141 depending on the
random selection of training and test datasets, with a mean taxa
number of 122 (Table S3).

HTS Results
The 76 samples selected for this study were part of a MiSeq (2 ×
250 bp) sequencing run composed of 284 rbcL diatoms libraries
from freshwater biofilm samples and were analyzed in a joined
analysis of 464 samples. In order to allow the bioinformatic
reproducibility of our study, the global dataset corresponding
to the 464 samples fastq files used for the Mothur and DADA2
bioinformatics analysis are available on the Zenodo repository
system (https://doi.org/10.5281/zenodo.3244156). We will only
present the results obtained for 76 samples studied here.

The sequencing platform performed the demultiplexing and
the contig steps, providing one fastq file per sample which
generated a total of 3,071,693 DNA reads for the 76 samples
with an average of 40,417 reads per sample (min = 23,140; max
= 67,292). After the application of the bioinformatic procedure
to generate the OTU table, 1,426,272 DNA reads remained and
were clustered into 856 OTUs (95% similarity threshold) with
an average of 122 OTUs per sample (min = 49; max = 236)
(Table S4). For the generation of the ISU table, bioinformatic
procedure conserved 2,008,452 DNA reads corresponding to a

total of 21,241 ISUs with an average of 2,214 ISUs per sample
(min = 344; max = 4,244) (Table S5). Regarding the ESV table,
DADA2 bioinformatic procedure conserved 2,852,542 DNA
reads corresponding to a total of 1,266 ESVs with an average of
96 ESVs per sample (min = 31; max = 186) (Table S6). Detailed
information regarding the effect of bioinformatic procedures on
DNA reads are summarized in Table S7.

Morphospecies/OTU/ISUs/ESVs
Community Structure Comparison
Basic summary data of the four biological inventories are
presented in Table 1. Logically, both the total and mean richness
per sample was much higher using molecular data; the number
of OTUs detected (856) was almost 2.5 times higher than the
total morphospecies richness (355). ESV richness was 1,266 in
total and ISU richness was several fold higher with a total and
mean richness per sample of 21,241 and 2,214 ISUs, respectively.
Here we note that rarefaction was not used to set all the
samples to the same read number as it was not mandatory for
indices development. Values of morphospecies, OTUs, ESVs, and
ISUs were converted into relative proportions in the different
biological tables for the different indices development. Richness
values are provided just as descriptive information and not
for comparison.

The four tables (morphospecies, OTU, ISU, and ESV) were
all found to be correlated with each other (all p < 0.001). The
strongest correlation was measured between the ISU and ESV
tables (Procrustes correlation = 0.99). Both ISU and ESV tables
were strongly correlated with the OTU table (0.87 and 0.86,
respectively) and with the morphospecies table (0.78 and 0.77,
respectively). Finally, the lowest correlation was found between
the OTU and the morphospecies tables (Procrustes correlation
= 0.67).

Distribution of Ecological Values
Ecological values (sensitivity and indicator) derived from the
abundance distribution of the four kinds of biological units were
defined (Tables S8–S11) and their distribution is presented in
Figure 3. The general pattern for the four data types is similar to
each other with a quasi-normal distribution of sensitivity values
and a right skewed distribution pattern of the indicator values.
Morphospecies inventory consists of the fewest data points while
ISU database contains the most. Consequently, morphospecies
inventory involves higher relative abundances of taxa than the
abundances of unique sequences. Both the relative abundance per
OTUs and the number of OTUs are between the morphospecies
and ISU inventories.

ISU composition and abundance within OTUs were further
analyzed in order to reveal hidden ecological information and
the results are presented on Figure 4 in the case of the ten
most abundant OTUs. Within some OTUs (e.g., OTU00001,
OTU00002, OTU0003, OTU00007, OTU00008, OTU00009, and
OTU00010) the frequency distribution of ISU sensitivity and
indicator values follow a unimodal pattern in which ecological
values of the most abundant ISUs are very close to the ones
of the OTU it belongs to. However, in other cases (OTU00004,
OTU00005, and OTU00006), OTUs contain more abundant ISUs
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TABLE 1 | Summary table indicating the number of distinct morphospecies, OTUs, ESVs, and ISUs in the entire dataset and the training datasets.

Morphospecies OTUs ESVs ISUs

Entire dataset Total richness 355 856 1,266 21,241

Mean richness per sample 28 (SD = 10) 122 (SD = 32) 96 (SD = 32) 2,214 (SD = 725)

Minimum richness 4 49 31 344

Maximum richness 56 236 186 4,244

Without rare species/OTUs/ISUs/ESVs Richness 110–133 442–498 432–491 14,641–15,756

FIGURE 3 | Distribution of the sensitivity (A) and indicator (B) values estimated for each morphospecies, OTU, ESV, and ISU during the training procedure. The

position of each dot corresponds to its average sensitivity/indicator values (over 100 estimates) and the size indicates its relative abundance.

whose ecological values differ from the one of the OTU they
belong to.

Comparison of Indices’ Values
The performance of the four indices (Idx_morph, Idx_OTU,
Idx_ISU, and Idx_ESV) was assessed by fitting a linear
model using the “lm” function in R (Chambers, 1992; R
Development Core Team, 2008) on the relationship between
the calculated index values and their corresponding reference
pressure gradient values (PC1) (Figures 5A–D). The relationship
was significant for each index (p < 0.01) with regression
coefficient values of 0.84, 0.76, 0.84, and 0.84 for Idx_morph,
Idx_OTU, Idx_ISU, and Idx_ESV, respectively. R2 values for
the correlation between Idx_ISU and PC1, Idx_ESV and PC1
and finally, Idx_morph and PC1 were significantly higher than
the R2 values of the correlation between Idx_OTU and PC1
(p < 0.05). The slope of the linear model however differed
from the m = 1 value at each case, with slope values of
m = 0.49, 0.45, 0.49, and 0.53 for Idx_morph, Idx_OTU,
Idx_ESV, and Idx_ISU, respectively (Table 2). The Wilcoxon-
test to compare prediction performance showed significantly
higher MSE values (i.e., weaker prediction) for Idx_OTU (MSE
= 8.73) than for all the other indices and both Idx_morph
(MSE = 6.85) and Idx_ISU (MSE = 6.75) performed better

in this aspect than Idx_ESV (MES = 6.98). Wilcoxon-test
for the prediction instability assessed by the mean standard
deviation due to the cross validation step showed that Idx_morph
is more stable (mean SD from CV = 6.85) than Idx_OTU,
Idx_ESV, and Idx_ISU (mean SD from CV= 0.58, 0.51, and
0.58, respectively).

DISCUSSION

De novo Construction of Morphological
and Molecular Diatom Indices
In this study we developed, tested, and compared diatom
indices based on morphospecies identified with microscopy and
molecular taxonomic units based on metabarcoding. Similar
studies aiming to develop quality indices using such approaches
have been already conducted but their number is quite few
(Apothéloz-Perret-Gentil et al., 2017; Cordier et al., 2017, 2018).
Significant correlations in our study between the reference
gradient and the predicted quality notes proved the validity of
our approach the model developed on the training dataset using
cross validation method could successfully be used on the test
dataset. From a further aspect, we carried out a comparison
of index performances based on molecular and microscopical

Frontiers in Ecology and Evolution | www.frontiersin.org 8 October 2019 | Volume 7 | Article 40943

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Tapolczai et al. Innovative Tools in Diatom Biomonitoring

FIGURE 4 | Histograms representing the distribution of the estimated sensitivity values and indicator values in the Idx_ISU for the ISU that were clustered into the 10

most abundant OTU. For each OTU, the vertical black lines indicate the ecological values of the most abundant ISU (relative abundance in the entire dataset >0.1%)

and the vertical red line shows the ecological values estimated for the complete OTU (Idx_OTU).

inventories but also studied the differences within molecular
methods, between OTU-, ISU-, and ESV- based indices.

Last decade(s) has seen a tremendous evolvement in
implementing molecular-based methods in biomonitoring with
the purpose to improve it in terms of standardization, cost- and
time-efficiency, accuracy, etc. (Leese et al., 2016). The first step
of this process was to imitate biomonitoring approaches already
used with microscopic data by substituting morphospecies
inventories with the ones obtained viametabarcoding. Numerous
studies revealed characteristic features in which OTU taxonomic
inventories perform differently than morphospecies, mainly
regarding taxonomic coverage issues or the quantification of the

biological signal (Zimmermann et al., 2015; Vasselon et al., 2017b,
2018). Molecular data was also used to create inventories for
already existing diatom indices based on morphospecies with the
common drawback of uncomplete reference libraries (Kermarrec
et al., 2014; Visco et al., 2015; Pawlowski et al., 2016; Rivera
et al., 2018). Recent studies have started to develop OTU-based,
so-called taxonomy-free indices in order to test the possibility
of using such approaches in diatom-based quality assessment
(Apothéloz-Perret-Gentil et al., 2017; Tapolczai et al., 2019), with
promising results.

It is worth to note that the literature makes a clear distinction
between taxonomy-free indices and machine learning based
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FIGURE 5 | Relation between the site scores on the reference gradient (PC1) and the scores estimated by each index: (A) Idx_morph, (B) Idx_OTU, (C) Idx_ESV, and

(D) Idx_ISU. Black dots and error bars represent the average and standard deviations, respectively, over the 100 training repetitions. The thick blue line represents the

estimated linear regression between PC1 and the index values. The black line materialize the perfect equivalence between PC1 and the indices (i.e., the optimal 1:1

line).

indices (Cordier et al., 2017, 2018). For consistency and clarity
we advocate that this dichotomy is not relevant and the
term machine learning can be employed to refer to both
approaches. Indeed, machine learning is a generic term for a
very broad statistical approach (basically consisting in training
predictive functions and testing their performance) rather than
the application of a reduced set of learning algorithms. Although
derived from a simple function, taxonomy-free indices based
on Zelinka and Marvan equation are obtained by optimizing
morphospecies/OTU/ISU/ESV weights with a training set or
through cross validation. This procedure is typical of supervised
machine learning.

In this study we take a step forward and assess the
performance of de novo developed molecular diatom indices
for the first time. We do not only assessed the performance
of molecular methods compared to microscopic one but
we reconsidered the already existing molecular methods
too. We showed that beside being a step toward a more
standardized biomonitoring, the Idx_ISU unveiled hidden
ecological differences between ISUs that are otherwise grouped
together into the same OTU due to their high genetic similarity,
masking the bioindication signal. Thus, the construction of de
novo indices enabled a fair comparison of different approaches
for the improvement in bioassessment.

Frontiers in Ecology and Evolution | www.frontiersin.org 10 October 2019 | Volume 7 | Article 40945

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Tapolczai et al. Innovative Tools in Diatom Biomonitoring

TABLE 2 | Summary table of the performances of the four indices.

Idx_morph Idx_OTU Idx_ESV Idx_ISU

Linear regression slope (m) 0.49 0.45 0.49 0.53

R2 0.84a 0.76b 0.84a 0.84a

Prediction performance

MSE (Wilcoxon-test)

6.85 (SD = 10.44)ac 8.73 (SD = 13.61)b 6.98 (SD = 10.52)c 6.75 (SD = 11.79)a

Prediction instability/mean standard

deviation from CV (Wilcoxon-test)

0.40 (SD = 0.35)a 0.58 (SD = 0.66)b 0.51 (SD = 0.26)b 0.58 (SD = 0.63)b

Superscript letters indicate significant pairwise differences detected by Wilcoxon tests.

Currently used diatom indices, as the Trophic Diatom Index
(TDI; Kelly and Whitton, 1995), the Biological Diatom Index
(Jean Prygiel, 2002) or the Specific Pollution sensitivity Index
(Coste, 1982), were developed using the ecological profile of
species along particular physical and chemical parameters related
to eutrophication, organic pollution, etc. Following the strategy
of previous studies of the authors (Tapolczai et al., 2017, 2019),
this study used another approach by applying the first principal
component of a PCA, carried out on our dataset, as the reference
gradient. It is a way to integrate the effect of the several
environmental parameters affecting the position of samples on
this gradient. We observed that all variables measured, except
pH, correlated well with the defined reference gradient. This
approach avoids completely the use of already existing index
values based on morphology as reference (Apothéloz-Perret-
Gentil et al., 2017) and serves perfectly the comparison of the
effect of different biological inventories on a newly developed
quality index. One technical disadvantage of this strategy is
that the gradient, together with the taxa’s ecological values are
specific to our data and cannot be directly used in other studies.
However, they can be always linked to values of environmental
parameters via their correlation with PC1. It is important to
note that the ecological validity of the use of a reference based
on solely physical and chemical parameters to assess ecological
quality is often contested (Kelly et al., 2009; Schneider et al.,
2016). The main critic is that although the WFD introduced the
new fundamental concept of the ecological quality defined by the
status of the biota instead of physical and chemical parameters,
the methods adopted are the already existing metrics based on
old concepts.

To define the ecological optimum of species, the weighted
average method was used. Even though it is sometimes
criticized by the literature, we used this method due to
its simplicity and the fact that the majority of the diatom
indices are still based on this calculation. Since the weighted
average assesses species optima the best where abundance
distribution of species is symmetric and unimodal, it usually
overestimates the quality note of poor quality sites and
underestimates the quality of high quality sites where species
distributions are strongly right- and left- skewed, respectively
as already shown by Tapolczai et al. (2017). Potapova
et al. (2004) proposed different strategies to improve the
calculation of the optima including generalized linear models
or giving multiple indicator values for species based on the
probability that it can be found in the different quality

classes, based on the “smoothed” distribution along the
reference gradient.

Comparison of the Performance of the
Four Indices
As highlighted in the previous section, the de novomorphological
(Idx_morph) and molecular (Idx_OTU, Idx_ISU, Idx_ESV)
diatom indices were all relevant to predict correctly the ecological
status of the study sites usingmachine learning approach. Despite
the relation between the site scores on the reference gradient
and the scores estimated with the four indices are highly similar,
the Idx_morph, Idx_ISU, and Idx_ESV performed equally and
outperformed the Idx_OTU.

The biological information used to compute the four
indices were based on diatom morphospecies (Idx_morph),
OTU (Idx_OTU), ISU (Idx_ISU), and ESV (Idx_ESV) tables.
Despite the methodological and biological biases introduced
by molecular and morphological approaches applied to obtain
those tables (Pawlowski et al., 2018), they were all derived
from the same environmental diatom community. Thus, as
we expected, the community structures revealed by the four
matrices were highly correlated, as shown by the procrustean
analyses and already observed in previous diatommetabarcoding
studies (Vasselon et al., 2017b; Rivera et al., 2018). The highest
correlation was observed between ESV and ISU structures, as
they are based on the same metabarcoding data, and both
correlated better with morphospecies than OTU. However, we
would expect OTUs to be more related to morphospecies as
OTUs are supposed to be proxies for species (Porter and
Hajibabaei, 2018). This may be explained partially by (i) our
OTU definition, determined by the choice of the OTU clustering
algorithm and the genetic distance similarity threshold applied,
which may not reflect properly the morphological diatom species
concept (Hugerth and Andersson, 2017; Tapolczai et al., 2019);
(ii) the bioinformatics biases introduced at the different steps
used to proceed raw DNA reads into OTUs, like the alignment
of DNA reads, the chimera detection or the OTU clustering
algorithm (Mysara et al., 2015; Edgar, 2018; Hardge et al., 2018);
(iii) the consistency of OTU, as genetically close taxa may be
grouped within the same OTU, reducing the final resolution of
the OTUs in comparison to ISUs and ESVs (Callahan et al., 2017).

In our study, the consistency of OTU is more likely to
affect the efficiency of the Idx_OTU in comparison to the
Idx_ISU and Idx_ESV. By confronting the distribution of the
sensitivity and indicator values of each ISU (estimated with
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the Idx_ISU index) to the values of their corresponding OTU
(estimated with the Idx_OTU index), we observed two patterns:
(i) OTU composition is consistent: the OTU is dominated
by one abundant ISU and both shared similar ecological
preferences; (ii) OTU composition is not consistent: the OTU
is dominated by several abundant ISUs which may have various
ecological preferences, the ecological preferences of the OTU
corresponding to an average of the dominant ISUs values. Among
the 10 most dominant OTUs observed, 3 of them appeared
to be inconsistent as they were composed by several abundant
ISUs with different ecological preferences (e.g., OTU00004).
As the calculation method used to create the quality index
gives more weight to dominant taxa (Bigler et al., 2010), the
misestimation of dominant OTU ecological preferences, due to
their inconsistency, reduces the efficiency of the Idx_OTU in
comparison of the Idx_ISU where estimation of ISU ecological
preferences is more realistic.

OTU consistency is mainly affected by methodological biases
introduced during the bioinformatics steps applied to create
OTUs, like the choice of the clustering method (Schmidt et al.,
2014). In our study we used the furthest neighbor method as
implemented in Mothur, which is known to create numerous
OTUs in comparison to recently developed clustering algorithm
like Opticlust (Westcott and Schloss, 2017) or Swarm (Mahé
et al., 2015). However, hierarchical complete linkage method,
like furthest neighbor, enables to create more consistent OTUs
with ecologically consistent partitions (Schmidt et al., 2014). The
sequence similarity threshold applied to define OTUs can also
affect their consistency, the smaller the threshold, the greater
the risk of merging genetically and ecologically diverse taxa.
As we used a 95% similarity threshold, this risk is increased,
however a previous study shown that the use of a threshold
between 95 and 99%, using furthest neighbor clustering method,
has a limited effect on the efficiency of the computed OTU
index (Tapolczai et al., 2019). Furthermore, we observed that the
dominant ISUs belonging to the sameOTU (e.g., OTU0004) were
genetically distant of only 2 or 3 nucleotides, corresponding to 1–
2% of differences. So even if we had applied the 97% similarity
threshold, the problem would have remained. There are some
clustering algorithms though, with strategies avoiding the use of
a global similarity threshold. These methods, e.g., Swarm (Mahé
et al., 2015) with a d parameter equal to one would potentially
separate this ecological signal. Similarly, OTU clustering based
on sequence distribution among samples (Preheim et al., 2013) or
the application of post-clustering curation procedure to denoise
OTUs (Frøslev et al., 2017) are attempts to handle the bias of
using sequence similarity threshold. However, in comparison
to OTUs, ISUs and ESVs are able to take into account intra-
species and intra-population variability which provide relevant
ecological information for freshwater biomonitoring.

Finally, even if the Idx_ISU and Idx_ESV outperformed
the Idx_OTU, it provided similar predictive power than the
Idx_morph with a higher correlation slope between the expected
gradient and the estimated index values, but appeared to be
significantly less stable. The highest prediction instability was
observed for sites corresponding to the extreme situation on the
physico-chemical reference gradient characterized by few sites

(particularly on polluted sites). It was already described that
the instability of the index development is related to the cross
validation process, used for defining training and test datasets,
which is sensitive to the size of the dataset and the presence of
outliers (Tapolczai et al., 2019). Even if this bias also occurred
in the Idx_morph, the highest instability was observed for the
Idx_ISU certainly due to the high number of ISUs obtained which
fragmented the ecological signal. Furthermore, highly impacted
sites are usually characterized by lower diatom richness and
can contribute to increase the instability of indices based on
molecular data (Tapolczai et al., 2019). This problem should be
mitigated by increasing the size of the dataset.

The Place of Molecular Metabarcoding
Approaches Within Actual Freshwater
Biomonitoring
In the context of freshwater biomonitoring and WFD, we need
transferable tools. We have shown that all indices produced
(Idx_morph, Idx_OTU, Idx_ISU, Idx_ESV) are suitable to
evaluate the ecological status of rivers using diatoms. However,
they do not perform equally in terms of routine monitoring
applicability. We already introduced the limitations related to
morphological approaches (time-consuming, limiting spatio-
temporal surveys, high expertise required), justifying the
development of molecular biomonitoring approaches. However,
these new molecular tools are not yet straightforward for
stakeholders and water managers. In this study we showed that
ISUs, after applying bioinformatic limited filtering steps, provide
enough resolution for monitoring and offer several transferable
advantages in comparison to OTUs or ESVs: (i) analysis are more
reproducible as ISUs correspond to the basic untransformed
unit produced with metabarcoding, without affecting their
composition with algorithm (e.g., chimera detection, denoiser,
clustering); (ii) they are consistent from one study to another
as their identifier is the DNA sequence itself (unlike OTU); (iii)
with less bioinformatics steps they are faster to analyze, require
less computing power and thus tools are more easily transferable;
(iv) like ESVs, they allow a higher resolution as they include
intraspecific/intrapopulation level.

A further advantage of new molecular approaches is the
detection of rare biosphere which might be of interest for
freshwater biomonitoring. In this context, if new molecular
indices are developed based on this rare biosphere, efficiency of
filtered ISUs should be validated as sequencing errors may bias
the ecological assessment. However, as discussed by Elbrecht et al.
(2018), the increasing number of metabarcoding data obtained
from freshwater sampling sites mitigates sequencing errors and
the need of denoising algorithm. With this data deluge, machine
learning methods combined with molecular approaches like
metabarcoding will change our way to perform biomonitoring
(Bohan et al., 2017).

Molecular approaches offer the possibility to increase spatial
and temporal survey of freshwater monitoring networks. On
the other hand, morphological approaches offer the possibility
to work with ecologically meaningful information relevant
for biomonitoring and not achieved by molecular ones, like
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morphological features observed at different life-stages of
organisms, the detection of teratologic forms, as well as traits
or ecosystem functions. The final objective is to improve our
ability to survey and protect freshwater ecosystems, which can
not be achieved with molecular based approaches alone for
now. Stability of those methods is still scarce due to permanent
technological and methodological evolution, meaning that
molecular and morphological approaches must be used in a
complementary way.
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The grand ambition of theorists studying ecology and evolution is to discover the logical

and mathematical rules driving the world’s biodiversity at every level from genetic diversity

within species to differences between populations, communities, and ecosystems.

This ambition has been difficult to realize in great part because of the complexity

of biodiversity. Theoretical work has led to a complex web of theories, each having

non-obvious consequences for other theories. Case in point, the recent realization

that genetic diversity involves a great deal of temporal and spatial stochasticity forces

theoretical population genetics to consider abiotic and biotic factors generally reserved to

ecosystem ecology. This interconnectedness may require theoretical scientists to adopt

new techniques adapted to reason about large sets of theories. Mathematicians have

solved this problem by using formal languages based on logic to manage theorems.

However, theories in ecology and evolution are not mathematical theorems, they

involve uncertainty. Recent work in Artificial Intelligence in bridging logic and probability

theory offers the opportunity to build rich knowledge bases that combine logic’s ability

to represent complex mathematical ideas with probability theory’s ability to model

uncertainty. We describe these hybrid languages and explore how they could be used to

build a unified knowledge base of theories for ecology and evolution.

Keywords: artificial intelligence, theoretical biology, theoretical ecology, evolution, theoretical population

genetics, machine learning, knowledge representation

1. INTRODUCTION

Almost four decades ago, Ralph W. Lewis argued for the formalization of evolutionary theory and
the recognition of evolution as a system of theories. In his words, “when theories are partially
formalized [...] the intra- and interworkings of theories become more clearly visible, and the
total structure of the discipline becomes more evident” (Lewis, 1980). Supporting Lewis’ point,
Queller recently showed how Fisher’s fundamental theorem of natural selection, Price’s theorem,
the Breeder equation of quantitative genetics, and other key formulas in ecology and evolution were
related (Queller, 2017). In the same vein, Rice formulated an axiomatic theory of evolution based
on a stochastic version of Price’s theorem (Rice and Papadopoulos, 2009). These projects fall under
the scope of automated theorem proving, one of the oldest and most mature branches of Artificial
Intelligence (Harrison, 2009a). Theories can be written in some formal language, such as first-order
logic or type theory, and then algorithms are used to ensure the theories can be derived from a
knowledge base of axioms and existing results. In the last few decades, mathematicians have built
knowledge bases with millions of helper theorems to assist the discovery of new ideas (Kaliszyk and
Urban, 2015). For example, theMizarMathematical Library is a growing library of theorems, which
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are added after new candidate theorems are approved by the
proof checker and peer-reviewed for style. Such libraries help
mathematicians juggle with a growing body of knowledge and
offers a concrete answer to the issue of knowledge synthesis.
Mizar uses a language powerful enough for the formalization
of evolutionary theories envisioned by Lewis and the result of
Queller on Price’s theorem and its relationship to other theories.
It is also expressive enough to build a knowledge base out of
Rice’s axiomatic theory of evolution. Doing so would force us to
think more clearly about the theoretical structure of evolution,
with theoretical ecology facing a similar state of disorganization
(Lewis, 1980). Case in point: theoretical community ecologists
have been criticized for focusing on a single prediction for
theories capable of making several (McGill et al., 2007). An
example of this is Hubbell’s neutral theory of biodiversity
(Hubbell, 2001), which uses an unrealistic point-mutation model
that does not fit with our knowledge of speciation, leading
to odd predictions (Etienne and Haegeman, 2011; Desjardins-
Proulx and Gravel, 2012a,b). In logic-based (also called symbolic)
systems like Mizar, all formulas involving speciation would be
implicitly linked together. Storing ecological theories in such
knowledge base would automatically prevent inconsistencies and
highlight the consequences of theories.

Despite the importance of formalization, it remains somewhat
divorced from an essential aspect of theories in ecology and
evolution: their probabilistic and fuzzy nature. As a few examples:
a surprisingly common idea found in ecological theories is that
predators are generally larger than their prey, a key assumption of
the food web model of Williams and Martinez (2000); deviations
from the Hardy-Weinberg principle are not only common but
tend to give important information on selective pressures; and
nobody expects the Rosenzweig-MacArthur predator-preymodel
to be exactly right. In short, important ideas in ecology and
evolution do not fit the true/false epistemological framework of
systems like Mizar, and ideas do not need to be derived from
axiomatic principles to be useful. We are often less concerned
by whether a formula can be derived from axioms than in how
it fits a particular dataset. In the 1980s, Artificial Intelligence
experts developed probabilistic graphical models to handle large
probabilistic systems (Pearl, 1988). While probabilistic graphical
models are capable of answering probabilistic queries for large
systems of variables, they cannot represent or reason with
sophisticated mathematical formulas. Alone, neither logic nor
probability theory is enough to elucidate the structure of theories
in ecology and evolution.

For decades, researchers have tried to unify probability theory
with rich logics to build knowledge bases both capable of
the sophisticated mathematical reasoning found in automated
theorem provers and the probabilistic reasoning of graphical
models. Recent advances moved us closer to that goal
(Richardson and Domingos, 2006; Getoor et al., 2007; Wang and
Domingos, 2008; Nath and Domingos, 2015; Hu et al., 2016;
Staton et al., 2016; Bach et al., 2017). Using these systems, it
is possible to check if a mathematical formula can be derived
from existing results and also possible to ask probabilistic
queries about theories and data. The probabilistic nature of
these representations is a good fit to learn complex logical and

mathematical formulas from data (Kok and Domingos, 2009).
Within this framework, there is no longer a sharp distinction
between theory and data, since the knowledge base defines
a probability distribution over all objects, including logical
relationships and mathematical formulas.

For this article, we introduce key ideas on methods at the
frontier of logic and probability, beginning with a short survey
of knowledge representations based on logic and probability.
First-order logic is described, along with how it can be used in
a probabilistic setting with Markov logic networks (Richardson
and Domingos, 2006). We detail how theories in ecology and
evolution can be represented with Markov logic networks, as
well as highlighting some limitations. We present a case study
involving a tritrophic system to demonstrate the strengths and
weaknesses of Markov logic networks. Synthesis in ecology
and evolution has been made difficult by the sheer number
of theories involved and their complex relationships (Poisot
et al., 2018). Practical representations to unify logic and
probability are relatively new, but we argue they could be used
to achieve greater synthesis by allowing the construction of
large, flexible knowledge bases with a mix of mathematical and
scientific knowledge.

2. KNOWLEDGE REPRESENTATIONS

Traditional scientific theories and models are mathematical, or
logic-based. Einstein’s e = mc2 established a relationship between
energy e, mass m, and the speed of light c. This mathematical
knowledge can be reused: in any equation with energy, we could
replace e with mc2. This ability of mathematical theories to
establish precise relationships between concepts, which can then
be used as foundations for other theories, is fundamental to how
science grows and forms an interconnected corpus of knowledge.
The formula is implicitly connected to other formulas involving
the same symbol, such that if we were to establish a different
but equivalent way to represent the speed of light c, it could
automatically substitute c in e = mc2.

Artificial Intelligence researchers have long been interested in
expert systems capable of scientific discoveries, or simply capable
of storing scientific and medical knowledge in a single coherent
system. Dendral, arguably the first expert system, could form
hypotheses to help identify new molecules using its knowledge
of chemistry (Lindsay et al., 1993). In the 1980s, Mycin was used
to diagnose blood infections (and did so more accurately than
professionals) (Buchanan and Shortliffe, 1984). Both systems
were based on logic, with Mycin adding a “confidence factor”
to its rules to model uncertainty. These expert systems generally
relied on a simple logic system not powerful enough to handle
uncertainty. With few exceptions, the rules were hand-crafted by
human experts. After the experts established the logic formulas,
the systems acted as static knowledge bases and unable to
discover new rules. Algorithms have been developed to learn new
logic rules from data (Muggleton and Feng, 1990; Muggleton
and de Raedt, 1994), but the non-probabilistic nature of the
resulting knowledge base makes it difficult to handle real-world
uncertainty. In addition to expert systems, logic systems are
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used to store mathematical knowledge and perform automatic
theorem proving (Harrison, 2009a). Pure logic has rarely been
used in ecology and evolution, but recent studies have shown its
ability to reconstruct food webs from data (Bohan et al., 2011;
Tamaddoni-Nezhad et al., 2013).

There are many different logics for expert systems and
automatic theorem proving (Harrison, 2009a; Program, 2013;
Nederpelt and Geuvers, 2014). We will focus on first-order
logic, the most commonly used logic in efforts to unify logic
with probability. A major reason for adopting rich logics,
whether first-order or higher-order, is to allow for the complex
relationships found in ecology and evolution to be expressed in
concise formulas. Stuart Russell noted that “the rules of chess
occupy 100 pages in first-order logic, 105 pages in propositional
logic, and 1038 pages in the language of finite automata” (Russell,
2015). Similarly, first-order logic allows us to directly express
complex ecological ideas in a simple but formal language.

In mathematics, a function f maps terms X (its domain)
to other terms Y (its codomain) f :X → Y. The number of
arguments of a function, |X|, is called its arity. The atomic
element of first-order logic is the predicate: a function that maps
0 or more terms to a truth value: false or true. In first-order logic,
terms are either variables, constants, or functions. A variable

ranges over a domain, for example x could range over integers,
p over a set of species, and city over a set of cities. Constants
represent values such as 42, Manila, π . Lastly, functions map
terms to other terms such as multiplication, integration, sin,
CapitalOf (mapping a country to its capital). Variables have to
be quantified either universally with ∀ (forall), existentially with
∃ (exists), or uniquely with ∃!. ∀x : p(x) means p(x) must hold
true for all possible values of x. ∃x : p(x) means it must hold for at
least one value of x while ∃!x : p(x) means it must hold for exactly
one value of x. Using this formal notation, we can write the
relationship between the basal metabolic rate (BMR) and body
mass (Mass) for mammals (Ahlborn, 2004):

∀m ∈ Mammal :BMR(m) = 4.1×Mass(m)0.75. (1)

This formula has one variable m which is universally quantified:
∀m ∈ Mammal reads “for all m in the set Mammal.” It has two
constants: the numbers 4.1 and 0.75, along with four functions
(BMR,Mass, multiplication, exponentiation). The equal sign= is
the sole predicate.

A first-order logic formula is either a lone predicate or a
complex formula formed by linking formulas using the unary
connective ¬ (negation) or binary connectives (and ∧, or ∨,
implication ⇒, see Table 1). For example, PreyOn(sx, sy) is
a predicate that maps two species to a truth value, in this
case whether the first species preys on the second species, and
IsParasite(s) is a predicate that is true if species s is a parasite.
We could also have a function Mass(sx) mapping a species to its
body mass. We can build more complex formulas from there,
for example:

∀sx :¬PreyOn(sx, sx). (2a)

∀sx, sy : PreyOn(sx, sy) ⇒ Mass(sx) > Mass(sy). (2b)

∀sx, sy : PreyOn(sx, sy) ∧ ¬IsParasite(sx) ⇒ Mass(sx) > Mass(sy).
(2c)

The first formula says that species don’t prey on themselves.
The second formula says that predators are larger than their
prey (> is a shorthand for the greater than predicate). The third
formula refines the second one by adding that predators are
larger than their prey unless the predator is a parasite. None
of these rules are expected to be true all the time, which is
where mixing probability with logic will come in handy. The
Rosenzweig-MacArthur equation can also easily be expressed
with first-order logic:

∀x, y : ẋ = r0

(
1−

x

K

)
−

Cxy

D+ x
∧ ẏ = X

Cxy

D+ x
− δ0y. (3)

This formula has four functions: the time differential ẋ ≡ dx/dt,
multiplication, addition, and subtraction. Prey x and predator
y are universally quantified variables while r0,K,C,D,X, δ0 are
constants. The formula has only one predicate, =, and both
sides of the formula are connected by ∧, the symbol for
conjunction (“and”).

A knowledge base K in first-order logic is a set of formulas
K = {f0, f1, ..., |f|K|−1}. First-order logic is expressive enough
to represent and manipulate complex logic and mathematical
ideas. It can be used for simple ideas such that predators are
generally larger than their prey (Equation 2b), mathematical
formulas for predator-prey systems equation (Equation 3),
and also to establish the logical relationship between various
predicates. We may want a PreyOn predicate to tell us whether
sx preys on sy, but also a narrower PreyOnAt(sx, sy, l) predicate
to model whether sx preys on sy at a specific location l.
In this case, it would be a good idea to have the formula
∀sx, sy, l : PreyOnAt(sx, sy, l) ⇒ PreyOn(sx, sy). Given this formula
and the data point PreyOnAt(Wolverine,Rabbit,Quebec), we
do not need PreyOn(Wolverine,Rabbit) to be explicitly stated,
ensuring the larger metaweb (Poisot et al., 2016) is always
consistent with information from local food webs.

An interpretation defines which object, predicate, or function
is represented by which symbol, e.g., it says PreyOnAt is a
predicate with three arguments, two species and one location.
The process of replacing variables with constants is called
grounding, and we talk of ground terms / predicates /
formulas when no variables are present. Together with an
interpretation, a possible world assigns truth values to each
possible ground predicate, which can then be used to assign
truth values to a knowledge base’s formulas. PreyOn(sx, sy)
can be neither true nor false until we assign constants to
the variables sx and sy. Constants are typed, so a set of
constants C may include two species {Gulo gulo,Orcinus orca}
and three locations {Quebec, Fukuoka,Arrakis}. The constants C
yield 22 × 3 possible ground predicates for PreyOnAt(sx, sy, l):

PreyOnAt(Gulo gulo,Gulo gulo,Quebec)

PreyOnAt(Gulo gulo,Orcinus orca,Quebec)

PreyOnAt(Orcinus orca,Orcinus orca,Quebec)

PreyOnAt(Orcinus orca,Gulo gulo,Quebec)
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PreyOnAt(Gulo gulo,Gulo gulo, Fukuoka)

. . .

and only two possible ground predicates for IsParasite:

IsParasite(Gulo gulo)

IsParasite(Orcinus orca)

We say a possible world satisfies a knowledge base (or a single
formula) if all the formulas are true given the ground predicates.
A basic question in first-order logic is to determine whether a
knowledge base K entails a formula f , or K |H f . Formally, the
entailment K |H f means that for all possible worlds in which all
formulas in K are true, f is also true. More intuitively, it can be
read as the formula following from the knowledge base (Russell
and Norvig, 2009). A proof in first-order logic can be derived
using inference rules such asModus Ponens:

α ⇒ β α

β
. (6)

This notation reads: infer β if α ⇒ β is true and α is true.
See Harrison (2009a) for a detailed look at inference rules in
first-order logic.

Probabilistic graphical models, which combine graph theory
with probability theory to represent complex probability
distributions, can provide an alternative to logic-based
representations (Koller and Friedman, 2009; Barber, 2012).
There are primarily two motivations behind probabilistic
graphical models. First, even for binary random variables, we
need to learn 2n − 1 parameters for a distribution of n variables.
This is unmanageable on many levels: it is computationally
difficult to do inference with so many parameters, requires
a large amount of memory, and makes it difficult to learn
parameters without an unreasonable volume of data (Koller and
Friedman, 2009). Second, probabilistic graphical models provide
important information about independences and the overall
structure of the distribution. Probabilistic graphical models were
also used as expert systems: Munin had a network of more than
1,000 nodes to analyze electromyographic data (Andreassen
et al., 1996), while PathFinder assisted medical professionals
for the diagnostic of lymph-node pathologies (Heckerman and
Nathwani, 1992) (Figure 1).

The two key inference problems in probabilistic machine
learning are finding the most probable joint state of the
unobserved variables (maximum a posteriori, or MAP) and
computing conditional probabilities (conditional inference). In a
simple presence/absence model for 10 species (s0, s1, ..., s9), given
that we know the state of species s0 = Present, s1 = Absent, s2 =

Absent, MAP inference would tell us the most likely state for
species s3, ..., s9, while conditional inference could answer queries
such as P(s4 = Absent|s0 = Present).

3. MARKOV LOGIC

At this point we have first-order logic, which is capable of
manipulating complex logic and mathematical formulas but

TABLE 1 | Common binary connectives.

Truth table

Name Common Symbol T × T T × F F × T F × F

Conjunction and ∧ T F F F

Disjunction or ∨ T T T F

Implication implies ⇒ T F T T

Material equivalence iff ⇔ T F F T

Exclusive disjunction xor ⊻ F T T F

The table shows the resulting truth value (T: True, F: False) for all possible combinations.

iff is read if and only if. Implication is one of the most common connective and may have

surprising behavior. In particular, it will always return true when the left-side is false. While

this may seem odd, it allows us to make statements such as ∀x ∈ R : x ≥ 0 ⇒

√

x2 = x.

This formula holds for all real numbers, including negative ones, since with x = −1, x ≥ 0

is false and F ⇒ F returns true.

cannot handle uncertainty, and probabilistic graphical models,
which cannot be used to represent mathematical formulas
(and thus theories in ecology and evolution) but can handle
uncertainty. The limit of first-order logic can be illustrated with
our previous example: predators generally have a larger body
weight (Mass) than their prey, which we expressed in predicate
logic as ∀sx, sy : PreyOn(sx, sy) ⇒ Mass(sx) > Mass(sy), but this is
obviously false for some assignments such as sx : grey wolf and
sy :moose. However, it is still useful knowledge that underpins
many ecological theories (Williams and Martinez, 2000). When
our domain involves a great number of variables, we should
expect useful rules and formulas that are not always true.

A core idea behind many efforts to unify rich logics with
probability theory is that formulas can be weighted, with higher
values meaning we have greater certainty in the formula. In pure
logic, it is impossible to violate a single formula. With weighted
formulas, an assignment of concrete values to variables is only
less likely if it violates formulas, and how much less likely will
depend on the weight assigned to the violated formula. The
higher the weight of the formula violated, the less likely the
assignment is. It is conjectured that all perfect numbers are even
(∀x : Perfect(x) ⇒ Even(x)), thus, if we were to find a single odd
perfect number, that formula would be refuted. It makes sense for
mathematics but for many disciplines, such as biology, important
principles are only expected to be truemost of the time. If we were
to find a single predator smaller than its prey, it would definitely
not make our rule useless.

The idea of weighted formulas is not new. Markov logic
networks (or justMarkov logic), invented a decade ago, allows for
logic formulas to be weighted (Richardson and Domingos, 2006;
Domingos and Lowd, 2009). Similar efforts also use weighted
formulas (Hu et al., 2016; Bach et al., 2017). Markov logic
supports algorithms to add weights to existing formulas given a
dataset, learn new formulas or revise existing ones, and answer
probabilistic queries (MAP or conditional). As a case study,
Yoshikawa et al. used Markov logic to understand how events
in a document were time-related (Yoshikawa et al., 2009). Their
research is a good case study of interaction between traditional
theory-making and artificial intelligence. The formulas they used
as a starting point were well-established logic rules to understand
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FIGURE 1 | A Bayesian network with four binary variables (the vertices) and possible conditional probability tables. Bayesian networks encode the distribution as

directed acyclic graphs such that P(X = x) =
∏

i P(xi |Pa(xi )), where Pa(xi ) is the set of parents of variable xi . Because no cycles are allowed, the variables form an

ordering so the set Pa(xi ) can only involve variables already seen on the left of xi . Thus, P(a)P(b|a)P(c) is a valid Bayesian networks but not P(a)P(b|c)P(c|b). The four

vertices represented here were extracted from PathFinder, a Bayesian network with more than 1,000 vertices used to help diagnose blood infections (Heckerman and

Nathwani, 1992). The vertices represent four variables related to blood cells and are denoted by a single character (in bold in the figure): C,M, L,G. We denote a

positive value with a lowercase letter and a negative value with ¬ (e.g.,: C = c, M = ¬m). Since P(¬x|y) = 1− P(x|y), we need only 2|Pa(x)| parameters per vertex, with

|Pa(x)| being the number of parents of vertex x. The structure of Bayesian networks highlights the conditional independence assumptions of the distribution and

reduces the number of parameters for learning and inference. As a example query: P(l,¬c,m,¬g) = P(l)P(¬c)P(m|¬c)P(¬g|l,¬c,m) = 0.81× (1− 0.65)× 0.27

× (1− 0.42) = 0.044. See Darwiche (2009) for a detailed treatment of Bayesian networks and Koller and Friedman (2009) for a more general reference on

probabilistic graphical models.

temporal expressions. From there, they used Markov logic to
weight the rules, adding enough flexibility to their system to
beat the best approach of the time. Brouard et al. (2013) used
Markov logic to understand gene regulatory networks, noting
how the resulting model provided clear insights, in contrast
to more traditional machine learning techniques. Markov logic
greatly simplifies the process of growing a base of knowledge: two
research labs with different knowledge bases can simply put all
their formulas in a single knowledge base. The only steps required
tomerge two knowledge bases is to put all the formulas in a single
knowledge base and reevaluate the weights.

In a nutshell, a knowledge base in Markov logic M is a set of
formulas f0, f1, f2, ... along with their weights w0,w1,w2, . . . :

M = {(f0,w0), (f1,w1), ..., (f|M|−1,w|M|−1)}. (7)

Given constants C = {c0, c1, . . . , c|C|−1}, M defines a Markov
network (an undirected probabilistic graphical model) which
can be used to answer probabilistic queries. Weights are real
numbers in the −∞, ∞ range. The intuition is: the higher the
weight associated with a formula, the greater the penalty for
violating it (or alternatively: the less likely a possible world is).
The cost of an assignment is the sum of the weights of the
unsatisfied formulas (those that are false). The higher the cost,
the less likely the assignment is. Thus, if a variable assignment
violates 12 times a formula with a weight of 0.1 and once a

formula with a weight of 1.1, while another variable assignment
violates a single formula with a weight of 5, the first assignment
has a higher likelihood (cost of 2.3 vs. 5). Formulas with an
infinite weight act like formulas in pure logic: they cannot
be violated without setting the probabilities to 0. In short, a
knowledge base in pure first-order logic is exactly the same as
a knowledge base in Markov logic where all the weights are
infinite. In practice, it means mathematical ideas and axioms
can easily be added to Markov logic as formulas with an infinite
weight. Formulas with weights close to 0 have little effect on
the probabilities and the cost of violating them is small. A
formula with a negative weight is expected to be false. It is
often assumed that all weights are positive real numbers without
loss of generality since (f ,−w) ≡ (¬f ,w). See Jain (2011) for
a detailed treatment of knowledge engineering with Markov
logic. Markov logic can answer queries of complex formulas
of the form:

P(f0|f1,M, C) =
P(f0 ∧ f1|M, C)

P(f1|M, C)
, (8)

where f0 and f1 are first-order logic formulas while M is a
weighted knowledge base and C a set of constants. It’s important
to note that neither f0 nor f1 need to be inM. Logical entailment
M |H f is equivalent to finding P(f |M) = 1 (Domingos and
Lowd, 2009).
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We build a small knowledge base for an established ecological
theory: the niche model of trophic interactions (Williams and
Martinez, 2000). The first iteration of the niche model posits that
all species are described by a niche positionN (their body size for
instance) in the [0, 1] interval, a diet D in the [0,N] interval, and
a range R such that a species preys on all species with a niche in
the [D − R/2,D + R/2] interval. We can represent these ideas
with three formulas:

∀x, y :¬PreyOn(x, y), (9a)

∀x :D(x) < N(x), (9b)

∀x, y : PreyOn(x, y) ⇔ D(x)− R(x)/2 < N(y) ∧ N(y) < D(x)

+R(x)/2, (9c)

As pure logic, this knowledge base makes little sense. Formula 9a
is obviously not true all the time but often is since most pairs of
species do not interact. In Markov logic, it is common to have
a formula for each lone predicate, painting a rough picture of
its marginal probability (Domingos and Lowd, 2009; Jain, 2011).
We could also add that cannibalism is rare ∀x :¬PreyOn(x, x)
and that predator-prey relationships are generally asymmetrical
∀x, y : PreyOn(x, y) ⇒ ¬PreyOn(y, x) (although this formula
is redundant with the idea that predators are generally larger
than their prey). Formulas that are often wrong are assigned a
lower weight but can still provide useful information about the
system. The second formula says that the diet is smaller than
the niche value. The last formula is the niche model: species
x preys on y if and only if species y’s niche is within the diet
interval of x. Using Markov logic and a dataset, we can learn a
weight for each formula in the knowledge base. This step alone
is useful and provides insights into which formulas hold best in
the data. With the resulting weighted knowledge base, we can
make probabilistic queries and even attempt to revise the theory
automatically. We could find, for example, that the second rule
does not apply to parasites or some group and get a revised rule
such as ∀x :¬IsParasite(x) ⇒ D(x) < N(x).

4. FUZZINESS

First-order logic provides a formal language for expressing
mathematical and logical ideas while probability theory provides
a framework for reasoning about uncertainty. A third dimension
often found in discussions on unifying logic with probability is
fuzziness. A struggle with applying logic to ecology is that all
predicates are either true or false. Even probabilistic logics like
Markov logic define a distribution over binary predicates. Going
back to Rosenzweig-MacArthur (Equation 3), this formula’s
weight in Markov logic is almost certainly going to be zero since
it’s never exactly right. If the Rosenzweig-MacArthur equation
predicts a population size of 94 and we observe 93, the formula is
false. Weighted formulas help us understand how often a formula
is true, but in the end the formula has to give a binary truth value:
true or false, there is no place for nuance. Logicians studied more
flexible logics where truth is a real number in the [0, 1] range.
These logics are said to be “infinitely many-valued” or “fuzzy.” In

TABLE 2 | Definitions of logic connectives for the three main fuzzy logics.

Logic

Connective Lukasiewicz Gödel-Dummett Product

x ∧ y max(0, x + y − 1) min(x, y) x × y

x ∨ y min(1, x + y) max(x, y) x + y − x × y

x ⇒ y min(1, 1− x + y) 1 if x ≤ y, y otherwise 1 if x ≤ y, y/x otherwise

¬x 1− x 0 if x > 0, 1 otherwise 0 if x > 0, 1 otherwise

These three logics are said to be normal, meaning they behave exactly like classical logic

when restricted to truth values of 0 (false) and 1 (true). When truth values are between 0

and 1, these logics will often behave differently than classical logic. For example, in both

classical and Lukasiewicz logics, ¬¬x ≡ x, but it is not the case for Gödel-Dummett and

Product logics (unless x ∈ {0, 1}). Another example is that conjunction and disjunction are

idempotent in classical and Gödel-Dummett logics, meaning x ∧ x ≡ x and x ∨ x ≡ x,

but it is not the case for Lukasiewicz and Product logics. See Behounek et al. (2011) for

a detailed explanation of how the connectives are defined.

this setting: 0 is false, 1 is true, and everything in-between is used
to denote nuances of truth (Zadeh, 1965; Behounek et al., 2011).
Predicates returning truth values in the [0, 1] range are called
fuzzy predicates, while standard predicates returning false, true
are said to be bivalent. To show fuzziness in action, let’s look
at a simple formula that says that small populations experience
exponential growth:

∀s, l, t : SmallPopSize(s, l, t) ⇒ N(s, l, t + 1) = R(s)× N(s, l, t).
(10)

Variables s, l, t, respectively, denote a species, a location, and
time. Function N returns the population size of a species at a
specific location and time while function R returns the growth
rate of the species. The predicates SmallPopSize and = are both
problematic from a bivalent perspective. Equality poses problem
for the same reason it did with the Rosenzweig-MacArthur
example: we do not expect this formula to be exactly right. The
notion of a small population size should also be flexible, yet
logic forces us to determine a strict threshold where SmallPopSize
will change from true to false. Using truth values in the [0, 1]
range makes it possible to have a wide range of nuances for both
SmallPopSize and equality. SeeTable 2 for the definitions of fuzzy
logic connectives.

Fuzzy logic is not a replacement for probability theory.
The most interesting aspect of fuzzy logic is how it interacts
with probability theory to form truly flexible languages. For
examples, fuzzy predicates are used in both probabilistic soft
logic (Kimmig et al., 2012; Bach et al., 2017) and deep learning
approaches to predicate logic (Hu et al., 2016; Zahavy et al., 2016).
Hybrid Markov logic (Wang and Domingos, 2008; Domingos
and Lowd, 2009) extends Markov logic by allowing not only
weighted formulas but terms like soft equality, which applies
a Gaussian penalty to deviations from equality. While not
exactly a full integration of fuzzy logic into Markov logic, soft
equality behaves in a similar matter and is a good fit for
formulas like the Rosenzweig-MacArthur system or our previous
example with exponential growth. Hybrid Markov logic is not
as well-developed as standard Markov logic, for example there
are no algorithms to learn new formulas from data. On the
other hand, Hybrid Markov logic solves many of the problems

Frontiers in Ecology and Evolution | www.frontiersin.org 6 October 2019 | Volume 7 | Article 40256

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Desjardins-Proulx et al. Artificial Intelligence for Ecological and Evolutionary Synthesis

FIGURE 2 | Various languages and their ability to model uncertainty, vagueness, and mathematics (the size of the rectangles has no meaning). In the blue rectangle:

languages capable of handling uncertainty. Probabilistic graphical models combine probability theory with graph theory to represent complex distributions (Koller and

Friedman, 2009). Alternatives to probability theory for reasoning about uncertainty include possibility theory and Dempster-Shafer belief functions, see Halpern (2003)

for an extended discussion. In the green rectangle: Fuzzy logic extends standard logic by allowing truth values to be anywhere in the [0, 1] interval. Fuzziness models

vagueness and is particularly popular in linguistics, engineering, and bioinformatics, where complex concepts and measures tend to be vague by nature. See Kosko

(1990) for a detailed comparison of probability and fuzziness. In the purple rectangle: languages capable of modeling mathematical formulas. It is important to note

that while first-order logic is expressive enough to express a large class of mathematical ideas, many languages rely on a restricted from of first-order logic without

functions. Alone, these languages are not powerful enough to express scientific ideas, we must thus focus on what lies at their intersection. Type-2 Fuzzy Logic is a

fast-expanding (Sadeghian et al., 2014; Mendel, 2017) extension to fuzzy logic, which, in a nutshell, models uncertainty by considering the truth value itself to be fuzzy

(Mendel and Bob John, 2002; Zeng and Liu, 2008). Markov logic networks (Richardson and Domingos, 2006; Domingos and Lowd, 2009) extends predicate logic with

weights to unify probability theory with logic. Probabilistic soft logic (Kimmig et al., 2012; Bach et al., 2015) also has formulas with weights, but allows the predicates

to be fuzzy, i.e., have truth values in the [0, 1] interval. Some recent deep learning studies also combine all three aspects (Garnelo et al., 2016; Hu et al., 2016).

caused by bivalent predicates while retaining the ability to
answer conditional queries. In the next section we’ll explore
hybrid Markov logic and its application to an ecological dataset.
Several languages for reasoning have combined fuzziness with
probability or logic (Figure 2). It has been argued that, in the
context of Bayesian reasoning, fuzziness plays an important role
in bridging logic with probability (Jacobs and Zanasi, 2018;
Nedbal and Serafini, 2018). However, how to effectively combine
rich logics with probability theory remains an open question, as
is the role of fuzziness.

5. MARKOV LOGIC AND THE SALIX
TRITROPHIC SYSTEM

The primary goal of unifying logic and probability is to be
able to grow knowledge bases of formulas in a clear, precise
language. For Markov logic, it means a set of formulas in first-
order logic. For this example, we used Markov logic to build
a knowledge base for ecological interactions around the Salix
dataset (Kopelke et al., 2017). The Salix dataset has 126 parasites,
96 species of gallers (insects), and 52 species of salix, forming
a tritrophic ecological network (Parasite → Galler → Salix).
Furthermore, we have partial phylogenetic information for the

TABLE 3 | A sample of three tables for the Salix dataset (Kopelke et al., 2017).

PreyOnAt IsParasitoid HighTemperature

Amorri Ovesic Site060 Ppecti Site006

Chalci Halien Site116 Psoemi Site311

Ireuni Hpolit Site291 Tspone Site296

Eacicu Ovimin Site121 Tsptwo Site183

… … … … …

Species are denoted by the first six letters of their names while sites are numbered from

1 to 374. Data in first-order logic is often organized in tables with one table per predicate

and where entries represent true values while absent combinations are assumed to be

false. For example, given this sample, HighTemp(Site006) is true while HighTemp(Site001)

would be false. The full data formatted for Alchemy-2 (Richardson and Domingos, 2006)

is provided as Supplementary Material.

species, their presence/absence in 374 locations, interactions,
and some environmental information on the locations. To
fully illustrate the strengths and limits of Markov logic in
this setting, we will not limit ourselves to the data available
for this particular dataset (e.g., we do not have body mass
for all species).

Data in first-order logic can be organized as a set of tables
(one for each predicate). For our example, we have a table
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named PreyOnAt with three columns (its arguments) and a
table named IsParasitoid with only one column. This format
implies the closed-world assumption: if an entry is not found,
it is false (see Table 3 for an example). For this problem we
defined several functions and predicates to describe everything
from predator-prey relationships, whether pairs of species often
co-occurred, along with information on locations such as
humidity, precipitation, and temperature (see Table 4). We ran
the basic learning algorithm from Alchemy-2 (Richardson and
Domingos, 2006), which is used both to learn new formulas
and weight them. The weights are listed at the end of each
formula. We use the “?” character at the end of the formula
involving data that were unavailable for this dataset (and thus,
we could not learn the weight). Here’s a sample of a knowledge
base where the first three formulas were learned directly from
our dataset and the last two serve as example for Hybrid
Markov logic:

∀s0, s1 : IsGaller(s0) ∧ PreyOn(s0, s1) ⇒ IsSalix(s1), 4.15. (11a)

∀s0, s1 : IsParasitoid(s0) ∧ PreyOn(s0, s1) ⇒ IsGaller(s1), 3.49. (11b)

∀s0, s1 : PreyOn(s0, s1) ⇒ HighCooccurrence(s0, s1), 1.57. (11c)

∀s0, s1, ∃α : PPreyOn(s0, s1) ≈ α exp
(
−2(N(s1)− C(s0))

2
/R(s0)

)
? (11d)

∀s0, s1 :CloselyRelated(s0, s1) ∧ T(Occ(s0)) > T(Occ(s1)) ⇒ Mass(s0) > Mass(s1)? (11e)

The first two formulas correctly define the tritrophic relationship
between parasites, galler and salix, while the third shows a
solid, but not as strong, relationship between predation and co-
occurence. Formula (9c) would require hybrid Markov logic and
a fuzzy predicate≈.

Integration of macroecology and food web ecology may rely
on a better understanding of macroecological rules (Baiser et al.).
These rules are easy to express with first-order logic, for example
Equation (11e) is a formulation of Bergmann’s rule. We also
used the learning algorithm to test whether closely related species
had similar prey, but the weight attributed to the formula was
almost zero, telling us the formula was right as often as it
was wrong:

∀s0, s1 :CloselyRelated(s0, s1) ∧ PreyOn(s0, s2) ⇒ PreyOn(s1, s2), 0.00.
(12)

This example shows both the promise and the current issues with
hybrid logic-probabilistic techniques. Many of the predicates
would benefit from being fuzzy, for example, PreyOn should take
different values depending on how often predation occurs. We
also had to use arbitrary cut-offs for predicates like CloselyRelated
and HighTemperature. Fortunately, many recent approaches
integrate logic with both fuzziness and probability theory (Adams
and Jacobs, 2015; Hu et al., 2016; Bach et al., 2017). Weights
are useful to understand which relationship is strong in the
data, and this example shows the beginning of a knowledge
base for food web ecology. The next step would be to discover
new formulas, whether manually or using machine learning
algorithms, and add data to revise the weights. If a formula
involves a predicate operating on food webs and we want to
apply our knowledge base to a dataset without food webs, this
formula will simply be ignored (because it won’t have grounded

predicates to evaluate it; see section 2). This is a strong advantage
of this knowledge representation: our little knowledge base here
can be used as a basis for any other ecological datasets even if they
quite different. With time, it’s possible to grow an increasingly
connected knowledge base, linking various ideas from different
fields together.

6. BAYESIAN HIGHER-ORDER
PROBABILISTIC PROGRAMMING

Artificial Intelligence has a long history with first-order logic
(Russell and Norvig, 2009) but type theory (or higher-order
logic), a more expressive logic, is currently more popular both
as a tool to formalize mathematics and as foundation for
programming languages. We explored hybrid approaches based
on first-order logic and, for this section, we’ll briefly discuss
Bayesian Higher-Order Probabilistic Programming (BHOPP)

along with its relationship with type theory. Probabilistic
programming languages are programming languages built
to describe probabilistic models and simplify the inference
process. Stan Carpenter et al. (2017) and BUGS Lunn et al.
(2012) are two popular examples of probabilistic programming
languages used for Bayesian inference, but even more flexible
languages for Bayesian probabilistic programming have recently
emerged. These languages, like Church Goodman et al.
(2008) and Anglican Wood et al. (2014), accept higher-order
constructs (that is: functions accepting other functions as
arguments). The ambition is that “ultimately we would like
simply to be able to do probabilistic programming using any
existing programming language as the modeling language”
(van de Meent et al., 2018).

First-order logic allowed us to model intricate theories
but, in practice, almost all modern systems used to formalize
mathematics are based on type theory (higher-order logic)
(Nederpelt and Geuvers, 2014). The “first” in first-order
logic refers to the limitation that quantification can only
be done on individual elements of a set, but not on
higher-order structures like sets, predicates, or functions. As
a consequence, several important concepts in mathematics
cannot be formalized directly with first-order logic. Since type
theory supports higher-order quantification, it is used as a
foundation to reason about mathematics. Coq, HOL, HOL
Light, and Microsoft’s LEAN are all popular languages for
automated theorem proving based on different forms of type
theory (The Coq Development Team, 2004; Harrison, 2009b;
de Moura et al., 2015). Programming languages in general,
not just those targeted at mathematicians, tend to also rely on
type theory as foundation (Pierce, 2002). See Farmer (2008)
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TABLE 4 | Predicates and functions used for the Salix example.

Functions Meaning

PPreyOn : species× species 7→ [0, 1] Probability that a species preys on another

PreyOn : species× species 7→ bool Predator-prey relationship

PreyOnAt : species× species× location 7→ bool Predator-prey relationship at a given location

PresenceAt : species× location 7→ bool Presence of a species at a location

IsParasite : species 7→ bool Whether the species is a parasite

IsGaller : species 7→ bool Whether the species is a galler

IsSalix : species 7→ bool Whether the species is a salix

CloselyRelated : species× species 7→ bool Whether two species are closely related

Occ : species 7→ {location} Set of locations where a species is found

Cooccurrence : species× species 7→ R
+ Proportion of locations where the species co-occur

HighCooccurrence : species× species 7→ bool Pair of species with high co-occurence

HighTemperature : location 7→ bool Location with above-average temperature

T :{location} 7→ R Mean temperature for a set of locations

Mass : species 7→ R
+ Mean adult body mass for a species

FoodWeb : location 7→ Graph Food web at a given location

Connectance :Graph 7→ R
+ Edges/Vertices2

SpeciesRichness :Graph 7→ N Number of species in the food web

N : species 7→ R
+ Niche of species per Williams et al. (2010)

C : species 7→ R
+ Diet of the species per Williams et al. (2010)

R : species 7→ R
+ Range of species’ diet per Williams et al. (2010)

A predicate is simply a function mapping to a boolean value (false or true, denoted bool). N stands for natural numbers (0, 1, 2,...) while R stands for real numbers, and [0, 1] is a

shorthand for a real number in the [0, 1] range. We must often force continuous values into boolean values. For example, HighTemperature and CloselyRelated both require arbitrary

cutoffs, often the line between true and false is set at the mean. Recent languages push for greater integration with fuzziness, which would allow predicates to take any values in the

[0, 1] range.

and Nederpelt and Geuvers (2014) for an introduction to
type theory. Here is where it gets confusing: the higher in
higher-order logic has a different meaning than in higher-
order probabilistic programming and yet, Bayesian higher-order
probabilistic programming languages (BHOPPL) may hold the
key to sound inference mixed with type theory. In BHOPPL,
higher-order means functions can take functions as arguments,
a common capability of modern programming languages. This
is necessary for higher-order logic but not sufficient. Where it
gets exciting is that a lot of progress is being made in framing
BHOPPL in the language of type theory (Borgström et al.,
2016). In effect, it would bring Bayesian and higher-order logic
reasoning together.

Furthermore, software-wise, BHOPPLs are well ahead of the
approaches described in previous sections such as hybridMarkov
logic networks. Current higher-order probabilistic programming
languages operate on variants of well-known languages: Anglican
is based on Clojure (Wood et al., 2014), Pyro is based on
Python (Bingham et al., 2019), Turing.jl uses Julia (Ge et al.,
2018). Many BHOPPLs have been designed to exploit the high-
performance architecture developed for deep learning such as
distributed systems of GPUs (graphics cards). GPUs have been
important in the development of fast learning and inference in
deep learning (Goodfellow et al., 2016). Pyro (Bingham et al.,
2019) is a BHOPPL built on top of PyTorch, one of the most
popular frameworks for deep learning, allowing computation to
be distributed on systems of GPUs. In contrast, there are no
open-source implementations of Markov logic networks running

on GPUs. The main downside of BHOPPLs is that, while in
theory they may support the richer logics used to formalize
modern mathematics, in practice higher-order probability theory
is itself not well understood. This is an active research topic
(van de Meent et al., 2018) but formalization faces serious
issues. For one, there are incompatibilities with the standard
measure-theoretic foundation of probability theory, which
may require rethinking how probability theory is formulated
(Borgströ et al., 2011; Staton et al., 2016; Heunen et al.,
2017; Staton, 2017; Ścibior et al., 2018). First-order logic is
among the most studied formal languages, making it easy
to use a first-order knowledge base with various software.
The current informal nature of BHOPPLs make them hard
to recommend for the synthesis of knowledge in ecology
and evolution, even though they may very well hold the
most potential.

7. WHERE’S OUR UNREASONABLY
EFFECTIVE PARADIGM?

Legitimate abstractions can often obfuscate how much various
subfields are related. Natural selection is a good example. Many
formulas in population genetics rely on fitness. Nobody disputes
the usefulness of this abstraction, it allows us to think about
changes in populations without worrying whether selection is
caused by predation or climate change. On the other hand,
fitness has also allowed the development of theoretical population
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genetics to evolve almost independently of ecology. There is
a realization that much of the complexity of evolution is
related to how selection varies in time and space, which puts
evolution in ecology’s backyard (Bell, 2010). Achieving Lewis’
goal of formalization would not prevent the use of fitness,
but having formulas with fitness cohabiting with formulas
explaining the components of fitness would implicitly link
ecology and evolution. This goes in both directions: what are
the consequences of new discoveries on speciation and adaptive
radiations on the formation of metacommunities? How can
community dynamics explain the extinction and persistence
of new species? If there isn’t a single theory of biodiversity,
the imperative is to understand biodiversity as a system of
theories. Given the scope of ecology and evolution and the
vast number of theories involved, it seems difficult to achieve
a holistic understanding without some sort of formal system to
see how the pieces of the puzzle fit together. Connolly et al.
noted how theories for metacommunities were divided between
those derived from first principles and those based on statistical
methods (Connolly et al., 2017). In systems unifying rich logics
with a probabilistic representation, this distinction does not exist,
theories are fully realized as symbolic and statistical entities.
Efforts to bring theories in ecology and evolution into a formal
setting should be primarily seen as an attempt to put them in
context, to force us to be explicit about our assumptions and see
how our ideas interact (Suppes, 1968).

Despite recent progress at the frontier of logic and probability,
there are still practical and theoretical issues to overcome tomake
a large database of knowledge for ecology and evolution possible.
Inference can be difficult in rich knowledge representations,
not all methods have robust open-source implementations, and
some approaches such as Bayesian higher-order probabilistic
programming are themselves not well understood. Plus, while
mathematicians benefit from decades of experience making large
databases of theorems, there have been no such efforts for
ecology and evolution. Lewis’ case for the formalization is worth
repeating: “when theories are partially formalized [...] the intra-
and interworkings of theories become more clearly visible, and

the total structure of the discipline becomes more evident”
(Lewis, 1980). This vision might soon become reality thanks to
increased access to data in evolution and evolution and recent
advances at the frontier of logic and probability. Given the
pressing need to understand a declining biodiversity, ecologists
and evolutionary biologists should be at the forefront of the
efforts to organize theories in unified knowledge bases.
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Royce Steeves 5, Erik Emilson 3, Nellie Gagne 5, Mehrdad Hajibabaei 4, Mélanie Roy 5 and
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Fredericton, NB, Canada, 2 Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton,
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Genomics and Department of Integrative Biology, University of Guelph, Guelph, ON, Canada, 5Department for Fisheries and
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An ongoing challenge for ecological studies has been the collection of data with high

precision and accuracy at a suitable scale to detect and manage critical global change

processes. A major hurdle has been the time-consuming and challenging process of

sorting and identification of organisms, but the rapid development of DNAmetabarcoding

as a biodiversity observation tool provides a potential solution. As high-throughput

sequencing becomesmore rapid and cost-effective, a “big data” revolution is anticipated,

based on higher and more accurate taxonomic resolution, more efficient detection,

and greater sample processing capacity. These advances have the potential to amplify

the power of ecological studies to detect change and diagnose its cause, through a

methodology termed “Biomonitoring 2.0.” Despite its promise, the unfamiliar terminology

and pace of development in high-throughput sequencing technologies has contributed

to a growing concern that an unproven technology is supplanting tried and tested

approaches, lowering trust among potential users, and reducing uptake by ecologists

and environmental management practitioners. While it is reasonable to exercise caution,

we argue that any criticism of new methods must also acknowledge the shortcomings

and lower capacity of current observation methods. Broader understanding of the

statistical properties of metabarcoding data will help ecologists to design, test and

review evidence for new hypotheses. We highlight the uncertainties and challenges

underlying DNA metabarcoding and traditional methods for compositional analysis,

specifically comparing the interpretation of otherwise identical bulk-community samples

of freshwater benthic invertebrates. We explore how taxonomic resolution, sample

similarity, taxon misidentification, and taxon abundance affect the statistical properties

of these samples, but recognize these issues are relevant to applications across all

ecosystem types. In conclusion, metabarcoding has the capacity to improve the quality

and utility of ecological data, and consequently the quality of new research and efficacy

of management responses.

Keywords: biodiversity observation, high-throughput sequencing, taxonomic resolution, community ecology,

environmental genomics, freshwater, benthic macroinvertebrate
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INTRODUCTION

Biodiversity loss and the risks it poses to ecosystem functions
and services remain a major societal concern (Cardinale et al.,
2012), but due to a lack of consistently-observed data, there is no
consensus regarding the speed or severity of this decline (Vellend
et al., 2013; Newbold et al., 2015). There are very few ecosystems
in which we can quantify the magnitude of degradation, nor
can we discriminate among multiple stressors, both key goals
for environmental monitoring programs (Bonada et al., 2006).
The power to detect change in ecological communities has
been hampered by sampling costs predominantly associated with
skilled human labor and travel. As a result, ecosystemmonitoring
programs must manage a trade-off between the scope of a
study, including the phylogenetic breadth of taxon coverage
and the resolution to which taxa are described (our universe
of observation), and its spatial and temporal coverage (e.g.,
tropical forests Gardner et al., 2008; marine sediments Musco
et al., 2009). A history of such trade-offs has led to entrenched
practices relying on observation of a narrow range of taxa, which
aim to provide a surrogate for the full biodiversity complement,
yet whose taxonomic, spatial, or temporal relationships are
largely undefined (Lindenmayer and Likens, 2011). Landscapes
are under increasing stress from multiple drivers, and yet the
troubling reality is that management decisions are informed by
very limited and potentially biased information, generated by
approaches that no longer reflect our understanding of how
ecosystems and species interact (Woodward et al., 2013).

Fortunately, technological advances offer the opportunity to
generate high-quality biodiversity data in a consistent manner,
increasingly automating processing pipelines, and radically
expanding the scope of ecosystem monitoring (Turner, 2014;
Bush et al., 2017). One of the most promising of these is
the technique of DNA metabarcoding, which supports the
massively-parallelized, and hence high-throughput, taxonomic
identification of organism assemblages within a biological
sample. While single-specimen DNA barcoding uses short
genetic sequences to identify individual taxa, often at the species-
level, metabarcoding supports simultaneous identification of
entire assemblages via high-throughput sequencing (Taberlet
et al., 2012; Yu et al., 2012). The application of metabarcoding
for ecosystem monitoring has been termed “Biomonitoring 2.0”
(Baird and Hajibabaei, 2012) because it could provide a universal
platform to identify any, and potentially all, phylogenetic groups
occurring within an ecosystem, including many taxa currently
not identifiable by expert taxonomists (e.g., streams: Sweeney
et al., 2011; rainforest: Brehm et al., 2016; marine zooplankton:
Zhang et al., 2018). As DNA sequencing capacity continues to
increase, there is a growing interest from ecological researchers
and environmental managers for guidance in how to apply these
new tools, and to provide clear evidence of their value relative to
existing microscopy-based methods. However, it is important to
emphasize that comparisons between traditional morphological
identifications and DNA sequences are far from straightforward.
For example, while metabarcoding can observe the occurrence
of DNA sequences within a specified environmental matrix (e.g.,
soil sample), it does not discriminate between intact, living

organisms, and their presence as parts, ingested, or extraneous
tissue. While some may see this as a challenge to be overcome,
to retrofit a new method to an old system of observation,
we view this as an opportunity to expand our universe of
interest, and gain new insight into metacommunity assembly
and structure (Bohan et al., 2017). We draw on recent research
intometabarcoding of freshwater macroinvertebrates to illustrate
these issues, the most widely applied non-microbial applications
of DNA metabarcoding to date, but many of the analytical
concepts we discuss will be common to other ecosystems
and assemblages.

Aquatic researchers have long recognized the challenges of
taxonomic identification and resulting limitations it imposes
on the scale and scope of observational, experimental and
monitoring studies (Jones, 2008). Freshwater monitoring
programs rely upon a subset of taxa, primarily aquatic
macroinvertebrates, fish, or algae, with little consistency across
environmental agencies or regions (Friberg et al., 2011), although
we acknowledge efforts in Europe to rectify these divides (Birk
et al., 2012). Sparse spatial and temporal coverage and limited
taxonomic resolution (e.g., Orlofske and Baird, 2013) ultimately
constrains outcomes to “pass/fail” (impacted/non-impacted;
Clarke et al., 2006; Strachan and Reynoldson, 2014), with
causes of degradation inferred rather than supported by direct
evidence. After decades of research, our ability to disentangle
the influence of even the most basic drivers that impact the
state of freshwater ecosystems is still limited (Woodward et al.,
2013). Given the challenges faced by aquatic ecologists it is
not surprising that within a decade of the first preliminary
studies (Hajibabaei et al., 2011), attention is now focused on
how to overcome the barriers to full-scale implementation (e.g.,
technological and regulatory Keck et al., 2017; Hering et al., 2018;
Leese et al., 2018; Porter and Hajibabaei, 2018a). It is therefore
timely to highlight how the interpretation of metabarcoding and
traditional morphological identification differ, their sources of
error, and sources of uncertainty.

OUR UNIT AND UNIVERSE OF
OBSERVATION

The science of aquatic biomonitoring is based on the principle
that site-level observations of biological assemblages integrate
responses to prevailing environmental conditions over space
and time, reducing the intensity of sampling required to detect
stressor-related changes in the environment, and providing an
immediate signal of “ecosystem health” (Friberg et al., 2011).
However, consistently observing more than a narrow range of
taxa within an ecological community has proved costly and
impractical, with accuracy of identification often unrecorded or
difficult to quantify, and varying across taxa. The observation
universe is further constrained by sampling methods (e.g., mesh-
size of collection nets), rather than common phylogenetic or
ecological characteristics, with further downgrading or exclusion
of groups that are difficult to identify (e.g., Vlek et al., 2006).
Even with the best taxonomic expertise available, it is practically
impossible to identify all specimens to species-level, since many

Frontiers in Ecology and Evolution | www.frontiersin.org 2 November 2019 | Volume 7 | Article 43464

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Bush et al. Studying Ecosystems With DNA Metabarcoding

early life-stages lack necessary diagnostic features (Orlofske and
Baird, 2013). Species are subsequently aggregated at higher
taxonomic ranks, obscuring species-level responses, constraining
our knowledge of whether species’ environmental preferences
are conserved or variable (Macher et al., 2016; Beermann et al.,
2018). In our view, the level of observation provided by direct
morphological identification of biological specimens in a sample
is highly variable (typically referred to as “lowest taxonomic
level”), disconnected from ecological theory, and contains an
unknown, yet potentially significant degree of bias (Jones, 2008;
Nakov et al., 2018).

DNA metabarcoding offers the potential to reduce many
of the costs involved in routine morphological identification
(Ji et al., 2013), and can also generate a richer list of taxa
(Sweeney et al., 2011; Gibson et al., 2015). Taxonomic assignment
is continually improving as DNA-barcode reference libraries
expand (e.g., Curry et al., 2018; Weigand et al., 2019), and in
contrast to morphological approaches, a universe of observation
defined by the DNA region and primers (see below) is less
ambiguous. The opportunity this represents has triggered a wide
range of metabarcoding studies in aquatic ecosystems (e.g., rivers
Hajibabaei et al., 2011; wetlands Gibson et al., 2015; lakes Bista
et al., 2017), and applied to describe community composition
in a wide variety of taxa (e.g., worms Vivien et al., 2015; insects
Emilson et al., 2017; diatoms Vasselon et al., 2017).

THE UNIVERSE OF OBSERVATION FOR
MONITORING WITH METABARCODING IN
FRESHWATERS

While metabarcoding offers the potential to observe a greater
diversity of taxa, a crucial step for any metabarcoding study is
the selection of primers used to amplify specific DNA sequence
marker regions, as they determine the taxonomic groups under
study and resolution of assignment (Hajibabaei et al., 2012;
Gibson et al., 2014). In order to expand taxonomic coverage,
it is necessary to employ a range of primers, and marker
sequences (see Figure 3 in Gibson et al., 2014). The cost of
sequencing additional primers can therefore limit the number of
sites surveyed, but these costs may rapidly decline as automated
processing becomes available. Refining primers for different
taxonomic groups or species has taken considerable effort, but
primers with broad coverage for invertebrates have now been
established (e.g., Hajibabaei et al., 2012; Elbrecht and Leese,
2017). However, amplification bias due to variable affinity among
sequence variants for amplification can distort the relationship
between sample biomass and the number of sequence reads
(Elbrecht and Leese, 2015; Zhang et al., 2018).Metabarcoding can
therefore support a taxonomically broad universe of observation,
but outputs should be treated as occurrences and do not support
reliable estimation of organism biomass or abundance.

Another key issue is the distinction between bulk-community
sampling and environmental DNA (eDNA). eDNA samples focus
on a signal derived predominantly from traces of intracellular
and extracellular DNA without attempting to isolate organisms
(e.g., from water or soil; Deiner et al., 2017; Cristescu and

Hebert, 2018), whereas bulk-community samples include eDNA,
but target the collection of whole organisms. eDNA can be
effective in detecting biological signal from the environment, but
the significant spatial and temporal uncertainty of that signal
clouds its application in observational studies. In addition, the
ease with which trace amounts of DNA can be transported
makes cross-contamination a critical issue for eDNA studies
(i.e., the addition of false-positives Ficetola et al., 2015), whereas
the high concentrations of template material in bulk samples
mean this is less of a concern (Majaneva et al., 2018). As a
result, our examples of metabarcoding below focus entirely on
observations derived from unsorted bulk-community samples
that are otherwise identical to traditional monitoring surveys.

INTERPRETATION

The statistical power and precision of any ecological assessment
that is based on sample assemblage composition depends upon
how results are aggregated and analyzed, how misidentification
(i.e., false-presences and false-absences) can obscure expectations
when setting the baseline composition, limiting our ability to
detect deviations from this baseline and infer that change has
occurred (e.g., Clarke et al., 2002; Clarke, 2009). Although many
sources of uncertainty affect our ability to infer regional and
landscape-level trends from site-level observations, these are
difficult to address with traditional approaches (Clarke, 2009;
Carstensen and Lindegarth, 2016). To illustrate this problem, and
whether metabarcoding can alleviate it, we focus on how four
sources of error involved in describing freshwater biodiversity
differ between morphological and metabarcoding workflows:
(a) taxonomic resolution, (b) replicate similarity, (c) taxonomic
misidentification, and (d) quantitative measures like abundance.

TAXONOMIC RESOLUTION

Biomonitoring 2.0 (Baird and Hajibabaei, 2012) employs
metabarcoding to overcome the taxonomic bottleneck of
sample processing, removing a critical trade-off between sample
taxonomic resolution and the number of samples that can
be studied (Jones, 2008). Moreover, sample metrics derived
from higher taxonomic categories, such as family- or genus-
level, make a tacit assumption that species within those higher
categories share similar environmental responses, and possess
similar ecological functions. However, when studies are able
to differentiate taxa at the species level, they may reject this
assumption (e.g., nutrient and sediment sensitivity; Macher et al.,
2016; Beermann et al., 2018), and this can significantly influence
study outcomes (Hawkins et al., 2000; Schmidt-Kloiber and
Nijboer, 2004; Sweeney et al., 2011).

Observing taxonomic assemblages at genus- or family-level
masks turnover in composition, reducing our power to detect
subtle changes among communities over space and time. As
each species is less common than its parent taxonomic group,
there will be fewer observations with which to establish reliable
associations, and their inclusion could add noise to statistical
models, echoing the long-running debate about the value of
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rare taxa in biomonitoring (Nijboer and Schmidt-Kloiber, 2004;
Lavoie et al., 2009). This “noise” is not only due to the stochastic
occurrence of uncommon species, but also sampling error,
which can be quantified using hierarchical occupancy models
(Clarke, 2009; Guillera-Arroita, 2017). We should therefore
be particularly cautious about concluding how taxonomic
resolution affects the strength of statistical relationships (Arscott
et al., 2006; Martin et al., 2016). Instead, our current challenge
is understanding when these subtle changes, previously invisible
to traditional monitoring, are related to natural environmental
factors or anthropogenic disturbance.

One criticism of DNA metabarcoding is that high taxonomic
resolution is not valuable if those taxa cannot be linked to
a binomial taxonomic name, a limitation that emerges when
barcode reference libraries are incomplete (Curry et al., 2018).
However, many methods of ecological assessment evaluate
community level characteristics such as alpha- and beta-diversity,
and therefore do not retain taxon identity, particularly at the
species-level (Birk et al., 2012). For this reason, interest in
taxonomy-free approaches is increasing among those studying
poorly-known assemblages whosemorphological identification is
challenging (e.g., meiofauna or diatoms; Vasselon et al., 2017).
Clearly defining the unit and universe of observation (i.e.,
taxonomic breadth and resolution) is fundamental to comparing
such characteristics (Cordier et al., 2018; Pawlowski et al.,
2018), but doing so could also improve compatibility between
biogeographically separated programs (Turak et al., 2017; Bailet
et al., 2019). Nonetheless, to tie DNA-based monitoring to
historic surveys, and to assign ancillary information such as
traits, it is still a requirement to assign taxonomic names to
identified sequences (e.g., Compson et al., 2018). Based on the
wealth of ecological information available that could complement
DNA-based ecological studies, and the considerable body of
legacy data generated by historical studies, including regulatory
monitoring, increasing reference library coverage should be a
priority for management agencies transitioning to DNA-based
surveys (Rimet et al., 2018; Stokstad, 2018; Weigand et al., 2019).

REPLICATE SIMILARITY

Depending on the scale of observation, species are rarely
distributed randomly or uniformly in nature (e.g., Soininen et al.,
2016). For example, the distribution of macroinvertebrate taxa in
streams is notoriously dynamic, as species adjust to changes in
both abiotic (e.g., flow velocity, substratum size) and biotic (e.g.,
fish predation, mussel aggregation) factors (Downes et al., 1993;
Vaughn and Spooner, 2006). Heterogeneity may also result from
stochastic processes such as dispersal and colonization (Fonseca
and Hart, 2001), ephemeral resources (Lancaster and Downes,
2014), or disturbance regimes at multiple scales (Effenberger
et al., 2006). Indeed, heterogeneity is so pervasive that a shift
toward greater homogeneity within aquatic communities could
indicate human modification of the landscape (Petsch, 2016).
Given such heterogeneity, the challenge for ecological studies
or biomonitoring is to detect a sufficient proportion of the
community, whilst also minimizing processing costs, so that

further detections are unlikely to alter the interpretation of
subsequent analyses. Counting all individuals in a sample can
have value, but it is prohibitive for routine observational studies,
and not cost-effective for biomonitoring purposes (e.g., Vlek
et al., 2006). Most studies therefore employ subsampling (i.e.,
identifying a subset of individuals collected from the field) to
reduce the time, effort, and cost of processing macroinvertebrate
samples. However, reducing the effort per sampling unit can
significantly underestimate the richness per sample (Doberstein
et al., 2000; Buss et al., 2014) and although subsampling is
standardized by volume, time, weight, or number of individuals,
it is often difficult to compare among survey methods and
biomonitoring schemes (Buss et al., 2014). Although sensitivity to
subsampling depends on the metric employed, subsampling can
substantially increase the misclassification of site status (Clarke
et al., 2006; Petkovska and Urbanič, 2010), and exaggerate the
perceived rarity ofmany taxa, whose exclusion from analysesmay
further bias interpretations of condition (Schmidt-Kloiber and
Nijboer, 2004).

Regardless of the sub-sampling approach, a single sample
only recovers a subset of the community, particularly in
heterogeneous environments. As sampling effort increases,
either by area or time, more taxa are recovered until the
rate of new discoveries declines (Vlek et al., 2006). The rate
of accumulation depends on taxon abundance distributions,
their dispersion, and ease of collection, including the effects
of environment on collection efficiency (Guillera-Arroita,
2017). For example, a typical 3-min kick-sample recovered
only 50% of the macroinvertebrates species, and 60% of
the families, found in total from six replicate kick-samples
(Furse et al., 1981). Figure 1 illustrates a similar degree of
turnover also occurs among replicate samples from the same
location for other standardized protocols that study aquatic
benthic invertebrates.

Metabarcoding can, in principle, substantially reduces
detection error by identifying damaged and juvenile specimens,
and because aliquots from homogenized bulk community
samples are likely to be more representative than morphological
subsamples. Nonetheless, successfully detecting all taxa is still
conditional on which primers were selected, on the sequencing
platform (Singer et al., 2019), the sequencing “effort” (checked
by rarefaction of taxon richness and sequencing depth), and,
particularly with bulk biological samples, the representativeness
of each extraction (checked by analyzing extractions from
multiple DNA aliquots). Although low-biomass, low abundance
taxa are more likely to be missed (Hajibabaei et al., 2012; Elbrecht
et al., 2017a), metabarcoding can detect a higher proportion
of the target assemblage compared to morphologically-
identified samples (i.e., faster rate of accumulation: Figure 2),
thereby increasing the power of monitoring programs to
detect change. Figure 2 compares the accumulation curves of
macroinvertebrate families collected in the Peace-Athabasca
Delta between 2011 and 2016 (updated from surveys published
in Gibson et al., 2015). Note that to compare the efficiency of
sampling, the metabarcoding data in Figure 2 were aggregated
to an equivalent family-level taxonomy of the morphologically-
identified samples, but the complete metabarcoding dataset
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FIGURE 1 | Dissimilarity between replicate samples (same location and time) based on presence/absence data (Sørensen), and count data (Bray-Curtis) of

morphologically identified macroinvertebrate families from (A) 417 CABIN (Canadian Aquatic Biomonitoring Network; ECCC, 2018) surveys (total n = 1,656, mean

richness = 16 ± 4.8), and (B) 787 surveys from the STAR-AQEM dataset (total n = 1,673) from 14 European countries (mean richness = 51 ± 18.4; Furse et al.,

2006; Schmidt-Kloiber et al., 2014).

actually observed 109 families, 263 genera, and thousands of
unique sequences.

MISIDENTIFICATION

Morphological identification of diverse taxonomic groups, such
as invertebrates, is challenging, as demonstrated by a lack of
reliable species-level data generated by routine biomonitoring
programs. The probability of misidentifying an individual
depends on the quality of the specimen (e.g., is the specimen
partial or complete? Is it mature or immature?), the availability
and completeness of identification keys, and the taxonomist’s
experience. Early audits of the RIVPACS program showed that
8.3% of family occurrences were missed, and approximately one
false presence was added in every four samples (Clarke, 2009).
Similarly, an audit of a range of European programs by Haase
et al. (2006) found that after accounting for misidentifications
and sorting errors, samples were on average 40% dissimilar
to their initial composition (based on lowest taxonomic
level). Though procedures for quality control and assessment
in biomonitoring programs have reduced the likelihood of
misidentification (Haase et al., 2010), false positives and negatives
are still common, identification errors compound the loss of
taxa during sub-sampling, andmisidentifications remain difficult
to predict.

A major advantage of metabarcoding over traditional
morphological identification is the ability to generate more

accurate identifications in a consistent manner (Orlofske and
Baird, 2013; Jackson et al., 2014). However, if organisms are
misidentified at the time of sequence deposition, reference
library sequences become associated with an incorrect taxonomic
name. To minimize this challenge, the Barcode of Life
Database (BOLD) stores information on voucher specimens,
supporting linkage of sequences to material in curated reference
specimen collections. Overall, database coverage for animals
is expanding rapidly (Porter and Hajibabaei, 2018b) and is
already relatively high for freshwater invertebrates (Leese et al.,
2018; Weigand et al., 2019). For example, sequences exist for
95% of the genera observed in >1% of samples collected by
the Canadian national biomonitoring program (Curry et al.,
2018). Currently, the BOLD reference library is better suited
to identifying macroinvertebrate families routinely observed in
Canada, reflecting the greater effort on DNA barcode library
development in that country when compared to Australia
and the UK (Figure 3, Supplementary Material S1). At the
time of writing, a routine Bayesian classifier (Porter and
Hajibabaei, 2018c) is expected to misidentify 4.4, 6.1, and
7.7% of families within CABIN, RIVPACS, and AUSRIVAS
programs, respectively. It cannot be overstated that this
is a significant improvement on the documented ability
of current best-available morphological identification, and
is accompanied by an ability to drill down to species-
level, which will only improve as DNA libraries become
more complete.
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FIGURE 2 | Accumulated richness (mean ± 95% confidence interval) of aquatic invertebrate families from 8 wetland sites in the Peace-Athabasca Delta, and for all

samples combined (note different scale) using DNA metabarcoding and morphological identification. Metabarcoded sequences were aggregated and restricted to the

same taxa as observed in the morphological dataset for the entire delta.

QUANTITATIVE MEASURES OF
BIODIVERSITY

As stated above, DNA metabarcoding results do not currently
produce a reliable signal of abundance or biomass (Elbrecht
and Leese, 2015), although at the same time a bias in organism
biomass can reduce the detectability of rare taxa (Elbrecht
et al., 2017a). Nonetheless, it is equally misleading to suggest

that current biomonitoring practices are themselves able to
effectively detect differences in macroinvertebrate abundance
without substantial effort. The difficulty of processing samples,
coupled with species’ patchy distributions, means few studies
can claim to have truly quantified patterns of abundance for
multispecies invertebrate assemblages (e.g., Hawkins et al., 2000).

Reliable estimates of taxon abundance or biomass can support
studies of many key ecological processes, and are fundamental to
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FIGURE 3 | Families ordered by frequency of occurrence within three biomonitoring programs: the CABIN (n = 540), the UK River Invertebrate Prediction and

Classification System (RIVPACS, n = 2,504), and the Australian River Assessment System (AUSRIVAS n = 1,516) from Victoria. Shading reflects the likelihood taxa

could be misidentified using the CO1 RDP classifier v.3 (see Supplementary Material S1 for further details).

detecting shifts in species dominance that are not associated with
changes in composition. This is particularly true in depauperate
systems, if species are pooled at higher taxonomic levels, or
rare taxa are discarded (Reynoldson et al., 1997). Nonetheless,
differences in the composition of diverse assemblages are often
sufficient to discriminate among sites, even at relatively coarse
taxonomic resolution (Thorne et al., 1999; Hawkins et al., 2000).
Thus, the challenge has always been the reliable identification
of those taxa. While count or relative abundance information
may provide another axis for discrimination, their inherent
variability exaggerates the dissimilarity among replicate samples
(Figure 1), rendering baseline conditions more variable, thus
reducing statistical power to detect change. These limitations
are well illustrated by studies that have replaced quantitative

count data with qualitative categories or occurrence data (e.g.,
Wright et al., 1984; Armanini et al., 2013). These approaches
have proved acceptable to practitioners precisely because
count data provide little or no incremental improvement to
detecting differences among sites. Moreover, approaches based
on occurrence data illustrate a direct pathway to implement
DNA metabarcoding in routine biomonitoring programs
(Beentjes et al., 2018).

PERFORMANCE

Study design and interpretation should acknowledge the sources
of uncertainty in both morphological and metabarcoding
approaches to deliver specific goals. As they are driven by
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regulatory needs, most monitoring programs focus on relatively
simple outcomes (e.g., local deviation from baseline; categorical
quality assessment), and thus can greatly benefit from increased
precision and statistical power. Recent freshwater ecosystem
studies have demonstrated that metabarcoding data can support
detection of ecological change at a greater level of discrimination
than traditional approaches (Gibson et al., 2015; Elbrecht
et al., 2017b; Emilson et al., 2017). Although regulators have

thus far remained hesitant to transition to monitoring with
metabarcoding, these early studies have highlighted a lack
of precision and consistency in the application of existing
morphological approaches, shortcomings that are too often
overlooked (but see Giupponi, 2007; Clarke, 2009; Birk et al.,
2012; Voulvoulis et al., 2017).

Our intent has been to explore the ability of DNA
metabarcoding as an observational tool that provides

FIGURE 4 | Comparison of macroinvertebrate families (n = 114) observed in pairs of standard 3-min river benthos kick samples (n = 141 sites). (A,B) Shows the

correspondence between observations of each taxonomic family using either morphological identification or DNA metabarcoding. Points are scaled relative to the

number of morphological observations. (C,D) Shows the probability that each method included at least one false absence for each taxon (see

Supplementary Material S2 for code and raw data).
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consistently-observed information to answer routine questions
posed by managers (e.g., Is biological composition at a site
significantly different from expectations, and if so, is there
evidence of impact?). Comparisons between metabarcoding
and morphology-based methods have involved sorting and
identification of a sample using existing taxonomic keys,
followed by the reassembly of the sample for metabarcoding
(but see also Hajibabaei et al., 2012; Gibson et al., 2015).
These approaches have demonstrated that DNA metabarcoding
recovered ∼90% of the taxa identified by morphology, and
all false-absences were from taxa that represented <1% of
individuals. Most recently, we have also evaluated the similarity
of taxa recovered by metabarcoding using paired samples
(Figure 4; GRDI-Ecobiomics, 2017). DNA was extracted from
unsorted bulk samples and, as for Figure 2, the data are
aggregated to family-level for comparison with the resolution
of routine monitoring in Canada (ECCC, 2018). The average
similarity of morphological and metabarcoded samples was 73%,
within the range of variation expected for replicate samples
(see Figure 1; Clarke et al., 2002). Of the families observed
by both methods, DNA observed 79% of the observations
made by morphology, whereas morphology only matched
61% of those made by DNA. Some families also appear to be
consistently under-represented or absent from this DNA dataset
(Figures 4A,B, bottom-left), most likely due to a combination
of gaps in the reference library (aquatic mites and oligochaetes
in particular) and primer bias (Gibson et al., 2014; Elbrecht
et al., 2017b). Beyond mere overlap, a better estimate of
performance could be the likelihood each family was missed
based on their detectability in replicate samples (Figure 4B).
Both methods are likely to have missed many families at least
once, but the mean and likelihood of multiple false absences
was lower among metabarcoding samples than for samples
identified by morphology (Supplementary Material S2).
Metabarcoding therefore represents a major advance in how
consistently we observe the taxonomic structure of aquatic
invertebrate communities.

CONCLUSIONS

Biomonitoring 2.0 (Baird and Hajibabaei, 2012) envisaged the
use of DNA metabarcoding to generate consistently-observed
biodiversity data to detect environmental change efficiently
and rapidly. This can be done with only minor modification
of existing sample collection methods, ensuring backwards
compatibility with legacy data. Finer taxonomic resolution,
more efficient detection (Figure 2), and the capacity to increase
spatiotemporal coverage can all increase the statistical power
to detect change and diagnose its cause (Bonada et al.,
2006). Finer taxonomic resolution and more samples with
metabarcoding would improve the estimation of detection
errors(e.g., Davis et al., 2018), and once standard operating
procedures emerge, many tasks can be automated, further
reducing the risk of handling errors and the costs of sequencing
(Porter and Hajibabaei, 2018a). Currently, the cost of processing
an invertebrate community sample (from DNA-extraction to

sequencing) is approximately half the cost of morphological
identification by taxonomists, but as we have stressed, the
divergent properties of each approach make it misleading to base
comparisons on costs alone.

We can only manage what we can measure, and at present
the unknown magnitude and consequences of global biodiversity
loss emphasizes the value of metabarcoding as a technique to
support improved ecological observation in all field studies of
multispecies assemblages. We expect the increasing numbers
of metabarcoding studies, and sequences in reference libraries,
will help refine the uncertainties associated with observations,
and accelerate the large-scale implementation of metabarcoding
(e.g., Leese et al., 2018). Metabarcoding is also being used for
increasingly novel applications, such as the study of trophic
interactions, either through direct analyses of gut contents, or
via the reconstruction of networks of multi-trophic assemblages
(Bohan et al., 2017). Other fields of research such as meta-
community theory (Miller et al., 2018), and ecosystem function
relationships (Vamosi et al., 2017) also benefit where previously
the statistical relationships were obscured by coarse taxonomic
resolution. These applications could generate substantial added
value to existing or future biomonitoring programs (Compson
et al., 2018).

In conclusion, ecologists in all ecosystems should be aware of
the shortcomings in their data, and acknowledge it publicly if the
uncertainty could alter their conclusions. Metabarcoding is now
an established technique, with the capacity to improve the quality
and utility of ecological data, and understanding its statistical
properties will help ecologists to design, test and review evidence
for new hypotheses.
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Threatened freshwater ecosystems urgently require improved tools for effective

management. Food web analysis is currently under-utilized, yet can be used to generate

metrics to support biomonitoring assessments by measuring the stability and robustness

of ecosystems. Using a previously developed analysis pipeline, we combined taxonomic

outputs from DNA metabarcoding with a text-mining routine to extract trait information

directly from the literature. This pipeline allowed us to generate heuristic food webs

for sites within the lower Saint John/Wolastoq River and the Grand Lake Meadows

(hereafter called the “GLM complex”), Atlantic Canada’s largest freshwater wetland.

While these food webs are derived from empirical traits and their structure has been

shown to discriminate sites both spatially and temporally, the accuracy of their properties

have not been assessed against other methods of trophic analysis. We explored

two approaches to validate the utility of heuristic food webs. First, we qualitatively

compared how well-trophic position derived from heuristic food webs recovered spatial

and temporal differences across the GLM complex in comparison to traditional stable

isotope approaches. Second, we explored how the trophic position of invertebrates,

derived from heuristic food webs, predicted trophic position measured from δ
15N values.

In general, both heuristic food webs and stable isotopes were able to detect seasonal

changes in maximum trophic position in the GLM complex. Samples from the entire GLM

complex demonstrated that prey-averaged trophic position measured from heuristic food

webs strongly predicted trophic position inferred from stable isotopes (R2
= 0.60), and

even stronger relationships were observed for some individual models (R2
= 0.78 for

best model). Beyond their areas of congruence, heuristic food web and stable isotope

analyses also appear to complement one another, suggesting a surprising degree of

independence between community trophic niche width (assessed from stable isotopes)
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and food web size and complexity (assessed from heuristic food webs). Collectively,

these analyses indicate that trait-based networks have properties that correspond to

those of actual food webs, supporting the routine adoption of food web metrics for

ecosystem biomonitoring.

Keywords: DNA metabarcoding, ecological network, trait, food web, stable isotope, trophic position, Bayesian

mixing model

INTRODUCTION

Freshwater ecosystems, which house a disproportionate amount
of Earth’s biodiversity (Dudgeon et al., 2006), facemultiple threats
(Cazzolla Gatti, 2016; Hu et al., 2017). Freshwater availability
(Rodell et al., 2018) and habitat extent (e.g., Dixon et al., 2016)
are in decline in most parts of the world. Yet, the very structural
and ecological complexity that gives freshwater systems their
capacity for biodiversity and ecosystem services also makes them
very difficult to study. This is particularly true for the planet’s
wetlands, which are generally viewed as hard to define, seasonally
variable, and often inaccessible.

While widely studied by ecologists, food web networks are
under-utilized in bioassessment, even though they provide a
wide range of information–from taxon-specific, node-to-node
information to higher order information aggregated across the
community–and are a tool for visualizing the dense information
in complex systems, such as wetlands. Metrics from food
web analysis can be used to infer their stability (May, 1972),
robustness to biodiversity loss (Estrada, 2007; Gilbert, 2009), and
different assembly or interaction mechanisms (Vázquez, 2005;
Williams, 2011). Food web networks explicitly show biodiversity,
species interactions, and structural and functional relationships
of ecosystems (Dunne et al., 2002b; Thompson et al., 2012),
and are an intuitive communication tool for environmental
managers, particularly when presenting to lay audiences.
However, constructing food webs is laborious (Thompson et al.,
2012), underscoring the need for new tools that can facilitate
this process to support wider implementation in bioassessment
(Bohan et al., 2017).

DNA metabarcoding has the potential to revolutionize
biomonitoring and bioassessment by providing a fast way of
consistently observing biodiversity in high-resolution detail
(Baird and Hajibabaei, 2012). Further, DNA metabarcoding
can be both more cost-effective and more efficient than
traditional biomonitoring (Aylagas et al., 2018). The rapid
adoption of DNA metabarcoding can be seen in the exponential
rise in the number of papers published about biomonitoring
with DNA metabarcoding in the last decade1. While much
of the early literature focused on assessing how well DNA
metabarcoding technologies could reproduce biodiversity data
collected by traditional means (e.g., Gibson et al., 2015;
Emilson et al., 2017), more recent efforts have expanded
the application of this approach, exploring possibilities for
leveraging genomic data in novel ways (e.g., Gray et al.,

1Makiola, A., Compson, Z. G., Baird, D. J., Barnes, M. A., Boerlijst, S. P., Bouchez,
A., et al. (2019). Key questions for the next-generation of biomonitoring. Front.
Ecol. Evol.

2014; Bohan et al., 2017; Derocles et al., 2018; Deagle et al.,
2019).

Concurrently, efforts have sought to make use of
organism traits to leverage existing biodiversity knowledge
for bioassessment. Traits-based approaches assume that
environmental filtering selects species with suites of traits that
allow them to coexist under similar environmental conditions
(Poff, 1997). Since many species share the same traits, traits-
based approaches are taxon-free measures of biodiversity (sensu
Damuth et al., 1992; Doledec and Statzner, 2008; Andrews and
Hixson, 2014). Body size, for example, is a trait that aggregates
information across taxonomic groups, and has been invoked
as a powerful, trait-based indicator of community responses
to disturbance (Liu et al., 2015). While growing interest in
traits-based approaches has prompted some of its key advocates
to call it a “bandwagon” (McGill, 2015; Didham et al., 2016),
we argue trait-based approaches have failed to realize their
full potential, focusing primarily upon phenomenological case
studies and relying on re-application of traits approaches to
traditional analyses (e.g., ordination approaches). This approach
has led to vacuous generalizations about traits approaches,
lacking in mechanistic evidence (Didham et al., 2016). Recently
there has been growing interest in using key traits to construct
ecological networks by linking them to the rich taxonomic
lists generated by DNA metabarcoding. Bohan et al. (2017)
advocated for such an approach to improve biomonitoring,
and tools for the construction of heuristic food webs from
biological community data have been developed (Gray et al.,
2015; Compson et al., 2018). Nonetheless, while these studies
have demonstrated a proof-of-concept for heuristic food
web construction from ecological traits, the scale of these
applications has been limited, and their connection to real
food webs remains unknown, as are their relationships to
ecosystem functions.

Stable isotope analysis is one of the primary ways of assessing
food webs, yet it is an imperfect approach, often elucidating
only part of the food web, and requires (1) information for all
consumer food sources, failing when isotopic signatures are too
similar (Birkhofer et al., 2017), (2) an understanding of how
different sources fractionate for different isotopes, tissues, and
life stages of the consumer (Post, 2002; McCutchan et al., 2003),
and (3) an appropriate number of isotopes (i.e., n – 1 per food
source, Fry, 2006), as the usefulness of mixing models declines
when the number of sources exceeds the number of isotopes
(Lerner et al., 2018). Thus, despite the complementarity of DNA
metabarcoding and stabile isotope information (Kartzinel et al.,
2015), the promise of merging this information to provide new
ecological insights has not been fully realized.
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Here, we assess the spatial and temporal variability of
invertebrate food webs of a large wetland complex, and
examine how trait-based and stable isotope approaches can be
used to assess these complex systems. Specifically, this study
explores how stable isotope information can be used to both
validate and improve the inference from heuristic food webs
that are themselves constructed from DNA metabarcoding
data integrated with trait information. We first explore the
performance of heuristic food web properties (e.g., trophic links,
omnivory, trophic position) at resolving spatial and temporal
differences in a large wetland complex. Second, we qualitatively
explore how heuristic food web and stable isotope approaches
compare at resolving spatial and temporal patterns of trophic
position. Third, we compare how strongly the trophic position of
invertebrates inferred using heuristic food webs predicts trophic
position as measured by δ

15N values. Fourth, we examine how
the unprecedented detail provided by DNA-derived heuristic
food webs provides complementary information to stable isotope
analysis of trophic niche width. We conclude with an exploration
of the utility of heuristic food web analysis as a management tool
for rapid bioassessment.

MATERIALS AND METHODS

Study Sites and Sample Collection
Our study area encompassed the lower Saint John/Wolastoq
River (SJWR) and the connected Grand Lake Meadows (GLM),
Atlantic Canada’s largest freshwater wetland (Figure 1); hereafter,
we refer to the SJWR and GLM collectively as the “GLM
complex.” We examined three regions within this vast wetland
complex: a region within the mainstem SJWR (“mainstem”), a
region within the Portobello National Wildlife Refuge area in
the heart of the GLM (“wetland”), and a region in the Jemseg
River (“transition”), which is a low-flow, intermediate system
connecting the GLM to the SJWR. Within each of these three
regions, sites (n = 6 sites per region) were chosen to capture the
range of habitat and flow variability across these regions, and to
provide a wide range of trophic variability by which to explore
relationships between metrics from heuristic food web and stable
isotope analyses.

Sites were sampled in early June, early September, and mid-
December, 2016. We chose these time points because they
represented the beginning, middle, and end of the active, ice-free
season in our system. In the spring, ice break up occurs, creating
large ice jams and massive spring flooding in the SJRW and GLM
systems; consequently, June was the earliest point that we could
sample with conditions returning to base flow. Peak productivity
occurred in late-August into early September, and the active, ice-
free season ended in mid-December during our final sampling
event. Because major ice-flows scoured our system in spring of
2016, very little aquatic insect biomass was observed post-flood in
June. Because of this, stable isotope samples were only collected
in September and December, when there was enough biomass
for sampling. Because early September (the peak of biological
activity) and mid-December (when ice began reforming in our
system) represented extremes in the biological activity in our
system, the time points we selected for stable isotope sampling

FIGURE 1 | Map of the study area. (A) The Grand Lake Meadows complex,

located in southern New Brunswick, is Atlantic Canada’s largest freshwater

wetland. (B) This complex is protected both nationally (diagonal lines) and

provincially (light gray). Our study area consisted of three distinct regions (dark

gray): the wetland (Wetland), the mainstem Saint John/Wolastoq River

(Mainstem), and the Jemseg River (Transition), which connects the wetland to

the mainstem region. Within each region, six sites were sampled three times

(early June, early September, and mid-December).

were expected to represent extremes in associated food webs and
trophic dynamics.

At each site (n = 18, each sampled at three
time points), paired benthic kick-net samples were
collected using the standard protocol from the
Canadian Aquatic Biomonitoring Network (CABIN;
https://www.canada.ca/en/environment-climate-change/services/
canadian-aquatic-biomonitoring-network.html): one sample for
bulk sequencing and DNA metabarcoding of invertebrates, and
a second sample for assessment of morphological identification
of these taxa, organism body size, abundance, and analysis of
stable isotopes (δ13C and δ

15N). For bulk DNA samples, sterile
technique was used and nets were sterilized between samples
in a 1% bleach solution. DNA benthic samples (“DNA”) were
preserved in 95% ethanol and stored at −80◦C, but samples for
microscopy and stable isotope analysis (“morphological”) were
directly frozen (−20◦C) on return to the lab, to avoid altering
their isotopic composition (Arrington and Winemiller, 2002;
Barrow et al., 2008). Additionally, samples for producer baselines
were taken at each site, including detritus, biofilm, and dominant
macrophytes; these samples were placed in paper bags and dried
at 60◦C in the lab for at least 72 h.

Laboratory Processing
Morphological samples were thawed and sorted, with
invertebrates identified to the lowest taxonomic level (usually
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genus) using standard morphological keys (e.g., Merritt et al.,
2008). Voucher samples and high-resolution digital images of
key taxa are stored at the Environment and Climate Change
Canada lab at the University of New Brunswick, Fredericton.
Additionally, individuals were measured (total length, mm),
and dried at 60◦C. For stable isotope samples, all dominant
taxa (based on biomass) were selected from samples covering
all major functional feeding groups. Because of the mass
requirements for stable isotope samples, we only included
samples for taxonomic groups that had a dry biomass of
≥0.6mg. This usually translated to each stable isotope sample
including many individuals (>20); however, many predator
groups were assessed from fewer individuals (often <3) because
of the rarity of these taxa. Dried macroinvertebrate and food
web base (i.e., biofilm, macrophytes, and leaf litter) samples were
homogenized, weighed on a Sartorius MC21S microbalance
(3.0 ± 0.1mg for biofilm and plant tissue and 1.0 ± 0.1mg
for macroinvertebrate tissue), enclosed in 4 × 6mm tin cups
(Costech Analytical Technologies Inc., Valencia, California,
USA), and delivered to the Stable Isotopes in Nature Laboratory
(SINLAB) at the University of New Brunswick (http://www.unb.
ca/research/institutes/cri/sinlab/) for stable isotope analysis.

Stable Isotope Analysis
Natural abundance stable isotopes of C and N were assessed for
aquatic invertebrates and the food web base. Invertebrate and
food web base 13C, 15N, C, and N content were measured using a
Carlo Erba NC 2500 Elemental Analyzer (CE Instruments, Milan,
Italy) with a Thermo-Finnigan Delta Plus XP (Thermo-Electron
Corp., Bremen, Germany) isotope ratio mass spectrometer at
SINLAB. Macroinvertebrate and food web base δ

13C and δ
15N

isotope compositions were expressed in parts per thousand
(‰) relative to Vienna PeeDee Belemnite for C and air for N,
as follows:

δ = ([Rsample/Rstandard]− 1)×1, 000 (1)

where R is the ratio 13C/12C or 15N/14N. Instrumental error—
measured as the standard deviation of repeated measurements of
working laboratory standards (i.e., caffeine (δ13C = −35.05‰,
δ
15N = −2.87‰), bovine liver (δ13C = −18.8‰, δ15N = 7.2‰)
and muskellunge liver (δ13C = −22.3‰, δ

15N = 14‰))—was
<0.1 ‰ for both δ

13C and δ
15N.

DNA Extraction and Sequencing
Benthic samples for DNA metabarcoding were packed on ice
and shipped to the Biodiversity Institute of Ontario at the
University of Guelph for DNA extraction, PCR amplification,
and high throughput sequencing (HTS). Briefly, samples were
homogenized in sterile blenders and the slurry was subsampled
into 50mL conical tubes. Samples were centrifuged, excess
preservative ethanol was removed, and residual ethanol was
evaporated at 65◦C. Once dry, the homogenate was subsampled
into 2mL lysing matrix tubes (MP Biomedicals, Solon, Ohio)
and further homogenized using a MP FastPrep-24 Classic tissue
homogenizer (MP Biomedicals). Samples were then extracted
using a NucleoSpin Tissue Kit (Machery-Nagel, Düren, German)

according to the manufacturer’s protocol, eluting with 30 uL
molecular grade water. Samples were extracted in batches of
12–18 with a negative control (no sample added) for each batch.

Two COI fragments were amplified using the primer
sets BR5 (B_F 5′ CCIGAYATRGCITTYCCICG, R5_R
5′ GTRATIGCICCIGCIARIACIGG−314 bp) and F230R
(Folmer_F 5′ GGTCAACAAATCATAAAGATATTGG 230R_R
5′ CTTATRTTRTTTATICGIGGRAAIGC−230 bp) in a two-step
PCR following the protocol outlined in Gibson et al. (2015),
with the exception of having a 35 cycle regime in the first PCR.
For both primer sets, the annealing temperature (Ta) was 46◦C
for 1min. The melting temperatures (Tm) for these primers
are as follows: BR5 (forward = 61.4◦C, reverse = 56.4◦C)
and F230 (forward = 50.5◦C, reverse = 56.7◦C). For further
information about these primers, which were designed to target
a wide range of arthropod orders, see Gibson et al. (2015). A
negative control was included for each batch of PCR, which was
carried through each of the two PCR steps. Amplification success
was confirmed visually using a 1.5% agarose gel. Amplicons
were purified using a MinElute DNA purification system
(Qiagen) and quantified using a Quant-iT (Invitrogen, Waltham
Massachusetts, United States) PicoGreen dsDNA assay on a
TBS-380 Mini-Fluorometer (Turner Biosystems Sunnyvale
California, United States). All samples were normalized to the
same concentration, and the two amplified fragments were
pooled for each sample prior to dual-indexing using the Nextera
XT Index Kit (Illumina, San Diego, California) (FC-131-1002).
Indexed samples were pooled into one tube, purified through
magnetic bead purification, and quantified using the PicoGreen
dsDNA assay. Average fragment length was determined on an
Agilent Bioanalyzer 2100 (Santa Clara, California, United States)
before sequencing the library on an Illumina MiSeq using the
V3 sequencing chemistry kit (2 × 300) (MS-102-3003). A 10%
spike-in of PhiX was used as a control.

Bioinformatic Methods
Raw Illumina MiSeq paired-end reads were processed using
the SCVUC v2.1 COI metabarcode pipeline, available on
GitHub at https://github.com/Hajibabaei-Lab/SCVUC_COI_
metabarcode_pipeline. At each step, read and ESV statistics
were calculated (Supplementary Table S1) using custom scripts
(available at the above link). Briefly, forward and reverse raw
reads were paired using SEQPREP (available from https://github.
com/jstjohn/SeqPrep) with a Phred quality score cutoff of 20 and
an overlap of at least 25 bp (St. John, 2016). For each marker,
forward and reverse primers were trimmed using CUTADAPT
v1.14, ensuring trimmed reads were at least 150 bp long, allowing
no more than 3 N’s, and ensuring a minimum Phred quality
score of 20 at the ends (Martin, 2011). A global ESV analysis
was conducted by pooling all the data together, dereplicating
the reads using VSEARCH v2.4.2 with the “derep_fulllength”
command, and denoising with USEARCH v10.0.240 using
the unoise3 algorithm (Edgar, 2016; Rognes et al., 2016). The
denoising step removes sequences with predicted sequence
errors, any PhiX carryover from MiSeq sequencing, putative
chimeric sequences, and rare clusters. We defined rare clusters
as exact sequence variant (ESV) clusters including only one or
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two reads (singletons and doubletons) (Callahan et al., 2017).
A sample ESV matrix was generated using VSEARCH with the
“usearch_global” command with an identity of 1.0 (100% exact
sequence mapping, including matching of exact substrings).
The denoised ESVs were taxonomically assigned using the COI
classifier v3.2 (Porter and Hajibabaei, 2018; https://github.com/
terrimporter/CO1Classifier).

Heuristic Food Web Construction
Heuristic food webs were constructed using a previously
published pipeline (Compson et al., 2018). Briefly, this pipeline
takes presence-absence taxonomic lists generated by DNA
metabarcoding and pairs it with a customized interaction
database covering the taxa found in our system. Our database
of pairwise trophic interactions was created using a) information
gathered from existing trophic databases (e.g., Database of
Trophic Interactions; Brose et al., 2005), b) information from
a secondary text-mining pipeline, and c) information manually
gathered from systematic literature searches. Specifically, we
used an updated trophic linkage database from Compson
et al. (2018), which we updated to include novel taxa found
in the GLM complex. Information gaps on species linkages,
caused by missing species in our trophic interaction database,
were inferred using a series of trait filters based on other
information, including functional feeding group, body size, and
phylogenetic relatedness. From the complete set of possible
pairwise interactions, linkages were first reduced based on the
known functional feeding group of each taxa, and then further
reduced based on the average body size of each taxa. When
functional feeding group or body size traits were not available,
we obtained these traits from the next closest related species.
The updated trophic linkage database includes 50,975 pairwise
interactions and covers 965 invertebrate genera. Using this
updated database, we created adjacency matrices by constraining
interactions to only taxa present in a sample (for individual food
webs) or region (for metawebs). We then used the cheddar R
package (version 0.1-633; Hudson et al., 2013) to create food webs
for each replicate sample and extract relevant food web metrics
used for subsequent analyses.

Mixing Models for Trophic Position
Analysis of trophic position was done in two ways. First, we
created a two-source, two-isotope Bayesian mixing model using
the tRophicPosition position package (version 0.7.7; Quezada-
Romegialli et al., 2018) in R to summarize trophic position of
consumers in each of the dominant functional feeding groups
in our system (i.e., predators, collectors, grazers, omnivores, and
shredders) (Model 1):

δ
15Nc = 1N(TP − λ)+ α(δ15Nb1 + δ

15Nb2)− δ
15Nb2, (2)

where δ
15Nc is the nitrogen isotopic ratio of the consumer,

δ
15Nb1 is the nitrogen isotopic ratio of the first baseline (biofilm),

δ
15Nb2 is the nitrogen isotopic ratio of the second baseline (leaf
litter), 1N is the trophic enrichment factor (TEF) for nitrogen,
TP is the trophic position of the target consumer, and λ is the
trophic position of the baseline. Additionally, this model uses
a secondary mixing model to calculate α, which accounts for

fraction in δ
13C and estimates the relative contribution of each

source to the consumer’s trophic position:

α = ([δ13Cb2 − (δ13Cc + 1C)]/(TP − λ))/(δ13Cb2 + δ
13Cb1), (3)

where δ
13Cc is the carbon isotopic ratio of the consumer for

which we want to estimate trophic position, δ13Cb1 is the carbon
isotopic ratio of the first baseline (biofilm), δ13Cb2 is the carbon
isotopic ratio of the second baseline (leaf litter), and 1C is the
TEF for carbon. The Bayesian approach allows Equations (2)
and (3), which both include TP and α, to be solved iteratively,
with δ

13C and δ
15N values and TEFs for both consumers and

baselines modeled as random variables with vague prior normal
distributions of their means [dnorm(0,τ ), τ = 1/SD2] and
vague prior uniform distributions of their standard deviations
[dunif (1,100)]; TP and α are treated as random parameters with
uniform and Beta prior distributions, respectively (Quezada-
Romegialli et al., 2018). We used the function “multiSpeciesTP”
to define and initialize the Bayesian model, and to sample the
posterior distribution of trophic position. The Bayesian model
ran 10,000 iterations used for the parameters “n.adapt,” “n.iter,”
and “burnin” and used five parallel Markov Chain Monte Carlo
(MCMC) simulations using the JAGS (version 4.3.0) Gibbs
sampler (Plummer, 2003).

The second approach we employed for calculating trophic
position (TP) was a more conventional model (Model 2; Post,
2002):

TP = λ + (δ15Nc − [δ15Nb1 × α + δ
15Nb2 × (1− α)])/1N. (4)

Here, α is defined as,

α = (δ13Cc − δ
13Cb2)/(δ

13Cb1 − δ
13Cb2). (5)

This model allowed us to calculate individual trophic position
values for all consumers in our system, including those taxa
represented by few individuals; Bayesian models, which require
replicate observations for each consumer estimated, could only
provide group-level estimates and confidence intervals for well-
represented individuals and functional feeding groups across
food webs. Consequently, trophic position values obtained from
Model 2 were used for all linear regression analyses. For both
Model 1 and Model 2, TEFs were based on values for whole
organisms reported in McCutchan et al. (2003). Additionally, for
predators, we explored models using consumers as the baseline,
which involved changing the baseline trophic position from
λ = 1 (for biofilm and detritus) to λ = 2 for consumers feeding
primarily on biofilm (i.e., grazers) and terrestrial leaf litter (i.e.,
shredders). Finally, from trophic position (TP) estimated from
Model 2, we also calculated adjusted trophic position (ATP),
which used known information about the habits of each organism
or functional feeding group to constrain trophic position to not
go below these trophic levels (i.e., λ = 2 for consumers and λ = 3
for predators).
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Bayesian Estimates of Isotopic Food Web
Size
To compare how community-wide trophic niche breadth
varied spatially and temporally, we used the SIBER R package
(version 2.1.4; Jackson et al., 2011). Specifically, we examined
the Bayesian posterior estimate of the convex hull area of
each community, which encompasses all species in δ

13C-δ15N
bi-plot space and is a measure of the total amount of niche
space occupied by the community (Layman et al., 2007).
The Bayesian model utilized a JAGS Gibbs sampler with five
MCMC chains. This model fit initial multivariate normal
distributions to each group in the dataset with rjags (version
4-8), using the recommended default SIBER parameters and
priors (Jackson et al., 2011). The default priors included an
inverse Wishart prior for fitting ellipses and a vague normal
prior for the means; vague normal priors are recommended for
fitting the means because SIBER internally z-score standardizes
the data before model fitting, aiding in the JAGS fitting
process (Jackson et al., 2011). Because of spatial and temporal
variation in our producer baselines (Supplementary Figure S1,
Supplementary Table S2), prior to running Bayesian models
we converted our δ

13C data to autochthonous reliance
values (0–1) and our δ

15N data to trophic position values
(based on Model 2).

Statistical Analyses
All statistical analyses were conducted in R (version 3.6.0; R
Core Team, 2013). To assess the spatial and temporal variability
in heuristic food web metrics, including estimates of trophic
position, we created a linear mixed effects model using the
lme4 package (version 1.1-21; Bates et al., 2019), where Season
and Region were fixed effects, and Site was a random effect
nested in Region. Contrasts were set up a priori to maximize
comparisons across the different levels of the individual terms
and interactions. Model terms and interactions were assessed
using both t values and calculated statistical significance using
Satterthwaite’s method for approximating the degrees of freedom
using the lmerTest package (version 3.1-0, Kuznetsova et al.,
2017).

Linear regression analyses were used to assess how well-
trophic position measured from heuristic food webs predicted
trophic position measured from stable isotope values. First, we
extracted trophic position values from all food webs, including
metawebs, using the TrophicLevels function in the cheddar
package (version 0.1-633; Hudson et al., 2013). This function
provides multiple estimates of trophic position for each node
in the food web, including prey averaged trophic position
(PATP) and chain-averaged trophic position (CATP) (Levine,
1980; Cohen et al., 2003; Williams and Martinez, 2004; Jonsson
et al., 2005). We then paired these values with trophic position
estimates from stable isotope values (Model 2, Equations 4 and
5) according to taxa (at the genus level) and conducted separate
analyses with different predictor (i.e., PATP and CATP) and
response (i.e., TP and ATP) variables. Model significance was
assessed using p-values (α = 0.05), and models were compared
qualitatively using R2 statistics.

RESULTS

Heuristic Food Webs
Heuristic food webs constructed from DNA and paired trait
information elucidated both spatial and temporal patterns
in the GLM complex. Metawebs (i.e., food webs aggregated
across samples) from the wetland region of the complex
were relatively larger (i.e., more nodes), denser (i.e., higher
connectance), and had a higher maximum trophic position
(due in part because of more predators) than metawebs from
the transition and mainstem regions of the complex; metawebs
from the transition region were generally the smallest and
sparsest, with lower numbers of nodes, links, and maximum
trophic positions compared to metawebs of the other regions
(Figure 2). Metawebs generally constricted through time, such
that they got smaller moving from early June, to early September,
to mid-December; however, metawebs from the transition
region of the GLM complex were the smallest, least complex
food webs overall, and varied little over the study period
(Figure 2).

Assessment of food web properties across individual heuristic
food webs revealed seasonal but little spatial variation. The
strongest patterns appeared to occur between June and
December, but differences between other months were also
apparent (Supplementary Table S3, Figure 3), with September
exhibiting the most variation in food web metrics compared
to the other months (Figure 3). Spatial patterns were weaker,
with no significant Region terms for any of the metrics and Site
variation explaining only a small amount of the residual variation
via the random effects, but there were Season∗Region interactions
for the number of trophic links and chain-averaged trophic level
(Supplementary Table S3).

Stable Isotope Analysis of Trophic Position
and Community Niche Width
Bayesian estimation of trophic position using stable isotopes
(Model 1, Equations 2 and 3) revealed no significant seasonal
differences in maximum trophic position (i.e., the trophic
position of predators) between September and December
(Supplementary Table S4). However, when the model was run
with primary consumers as the baseline instead of the food web
base (i.e., leaf litter and biofilm), trophic position of predators was
significantly lower in the wetland region in December compared
to September (Supplementary Table S4). This, however, was
the only significant pattern revealed by Bayesian analysis of
trophic position (Supplementary Table S4). Because Bayesian
mixing models are very different from linear mixed effects
models and stable isotope data were only collected in September
and December, we also qualitatively assessed maximum trophic
position assessed from stable isotopes (Model 2, Equations 4
and 5) with maximum trophic position assessed from heuristic
food webs using a series of reduced linear mixed effects
models (Supplementary Table S5). These results indicated that
the stable isotope approach showed differences in maximum
trophic position in September compared to December, while
heuristic food webs did not (Supplementary Table S5). Similar
to Bayesian and full linear mixed effects models, these reduced
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FIGURE 2 | Metawebs for the Portobello Creek wetland complex (Wetland), the Jemseg River connecting the wetland to the mainstem (Transition) and the Saint

John/Wolastoq River (Mainstem) in (A–C) June, (D–F) September, and (G–I) December of 2016. Trophic position for each node was calculated as the food

chain-averaged value for that consumer or resource. For nodes, green squares depict producers, blue squares depict consumers, and open blue circles depict

cannibalistic consumers. The size of nodes and thickness of links are scaled to the maximum trophic position for each food web.

models failed to show any significant effects among regions
(Supplementary Table S5).

Invertebrate community trophic niche widths varied little
spatially and temporally (Figure 4). In general, trophic niche
widths were slightly larger for all regions in December—when
trophic positions were also higher for all regions (Figure 4A)—
compared to September, but these differences were not strong
as the 95% confidence intervals for all regions and seasons
overlapped (Figure 4B). While the trophic niche widths did
not change spatially or temporally, energy pathways did change
among regions through time (Figure 4A). Communities in the
wetland and transition regions, for example, both increased
in their autochthonous reliance moving from September to
December; communities in the mainstem region, however,
decreased in their autochthonous reliance moving from
September to December (Figure 4A). In general, communities
in the mainstem region were fueled by autochthonous
resources in September, but shifted toward a mixture of

autochthonous and allochthonous resources in December, while
communities in the wetland and transition regions relied on
both autochthonous and allochthonous resources in September
and increased in their reliance on autochthonous resources in
December (Figure 4A).

The Relationship Between Estimated and
Measured Trophic Position
Trophic position estimated from heuristic food webs was
generally a strong predictor of trophic position estimated from
stable isotope values (Supplementary Table S6). Prey-averaged
trophic position (PATP) was consistently the strongest predictor
of trophic position estimated from stable isotope values,
exhibiting the highest R2 values across models (seasonal models,
R2 range: 0.51–0.78; global models, R2 range: 0.48–0.60). The
strength of the relationships generally increased for predictions
of adjusted trophic position (ATP) (Supplementary Table S6),
as this variable constrained trophic position estimates based
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FIGURE 3 | Boxplots of the eight measured heuristic food web properties, expressed across the three regions of the GLM complex (Wetland, Transition, and

Mainstem) and across the three seasons of the study (June, September, and December). Food web metrics included the following whole-network properties: (A) the

number of nodes, (B) the number of trophic linkages among nodes, (C) the proportion of omnivory, (D) relative trophic vulnerability, or the average vulnerability across

all nodes, standardized by the number of trophic linkages, (E) the number of unique trophic species, (F) the trophic similarity measured across all nodes, (G) the

maximum prey-averaged trophic position, and (H) the maximum chain-averaged trophic position.
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FIGURE 4 | (A) Convex hulls for the three regions of the GLM complex in

September [open squares = wetland (WS), open circles = transition (TS), open

triangles = mainstem (MS)] and December [filled squares = wetland (WD), filled

circles = transition (TD), filled triangles = mainstem (MD)]. Convex hulls are

based on the centers of each of the functional feeding groups that make up

each community. (B) Density plots of the convex hull area are based on

posterior estimates from Bayesian mixing models analyzed using the R

package SIBER. Black dots depict group modes, and the shaded boxes

represent the 50% (dark gray), 75% (gray), and 95% (light gray) confidence

intervals.

on knowledge of the minimum possible trophic position of
a consumer. The global model predicting ATP (including all
paired samples across all regions and seasons) was significant
for both maximum PATP (R2 = 0.60, p < 1.00 e-15; Figure 5A)
and maximum chain-averaged trophic position (CATP; R2 =

0.38, p < 1.00 e-15; Figure 5C), and these relationships were
generally stronger for specific regions at specific time periods
(PATP R2 range: 0.58–0.78; CATP R2 range: 0.34–0.62). For these
models, the deviation in predicted andmeasured trophic position
varied based on functional feeding group. For example, the
best predictor (i.e., PATP) tended to underestimate the trophic
position inferred from stable isotopes for filter-feeders, but
predictions closely matched for collector-gatherers, shredders,
and predators, the latter which exhibited the lowest amount of
variation in trophic deviation (Figure 5B). Trophic deviation

patterns changed when CATP was used as the predictor, which
tended to better predict the trophic position of functional feeding
groups closer to the base of the food web and over predict
the trophic position of functional feeding groups at higher
trophic levels (Figure 5D). Finally, across all individual food
webs, models that only included the maximum trophic position
of each food web revealed that heuristic food web estimates
significantly predicted the maximum trophic position estimated
by stable isotope analysis (Supplementary Table S6, producer
baseline models; all p < 0.05), but that these patterns were
relatively weak (R2 range: 0.13–0.17); these patterns, however, did
not hold when consumer baselines were used in trophic position
models instead of producer baselines (Supplementary Table S6,
consumer baseline models; all p > 0.05).

DISCUSSION

The Predictive and Discriminatory Power
of Heuristic Food Webs
We have demonstrated that heuristic food webs can provide a
reliable and powerful tool for the characterization of invertebrate
community structure and assessment of spatial and temporal
differences among the wetland, transitional, and mainstem
regions of the GLM complex. Metawebs of the three regions
indicated that all food webs became less connected moving
from June to September to December, and that the largest
spatial differences across regions were in June and December,
where the wetland trophic network was clearly larger and
denser than transition and mainstem networks. Analysis of
individual food webs indicated that temporal patterns were
more pronounced than spatial patterns. All the food web
properties we examined showed significant variation seasonally,
whereas none showed significant spatial variation, though there
were significant Region∗Season terms for both trophic links
and chain-averaged trophic position (Supplementary Table S3).
These results support those found in another study examining
DNA-based heuristic food webs in a different wetland complex,
the Peace-Athabasca Delta, in northern Alberta (Compson et al.,
2018). Given that extensive flooding in both the Peace-Athabasca
Delta and GLM complex are regular events, connecting the
wetlands to the main river channels, perhaps it is not surprising
that these aquatic habitats can appear structurally homogeneous
(Thomaz et al., 2007). However, the apparent contradiction
between our metawebs, which showed clear structural differences
among regions, and analysis of individual food webs suggests
that it is more likely that spatial variability among sites within
these regions was high, and this was certainly the case at all
sites in September (Figure 3). This highlights one of the key
advantages of metawebs as a visualization tool for biodiversity
and community structure: while they do not convey the site-
level variation within a region, because they are an aggregator
of all detected biodiversity in a system, they give an overview of
how these taxa are structured and interact trophically, providing
scientists with a tool for making predictions about how a
system might respond to perturbations (e.g., species extirpations
or invasions, changes in resource availability, anthropogenic
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FIGURE 5 | Global linear regression models illustrating how well two heuristic food web estimates of trophic position [(A) prey-averaged trophic position and (C)

chain-averaged trophic position] predicted trophic position inferred from stable isotope analysis. Points have been jittered for visualization purposes. (B,D) Deviation of

different functional feeding groups are indicated by black dots with 95% confidence intervals; negative values indicate when heuristic food web analysis

underestimated stable isotope trophic position, and positive values indicate when heuristic food web analysis overestimated stable isotope trophic position.

impacts) and how ecosystems function (reviewed in Thompson
et al., 2012).

Stable isotope analysis generally confirmed the spatial and
temporal patterns revealed by our heuristic food web analysis.
For example, our Bayesian mixing models (Model 1, Equations
2 and 3) demonstrated that predators had a significantly
higher trophic position in September compared to December
at sites in the wetland region, but that there were no spatial
differences in the trophic position of predators or any other
consumers. Given that we only collected stable isotope samples
in September and December, a more direct comparison of how
well-heuristic food webs and stable isotopes resolved spatial and
temporal patterns is a qualitative assessment of the reduced
linear mixed effects models (Supplementary Table S5). Again,
analysis of trophic position calculated from stable isotope values
(Model 2, Equation 4 and 5) indicated that maximum trophic
position only varied seasonally, and that there were no spatial
differences. Interestingly, the two food web metrics we examined
(i.e., prey-averaged trophic position and chain-averaged trophic

position) differed neither spatially nor temporally using the
reduced linear mixed effects models (i.e., using only September
and December data) (Supplementary Table S5). Here, the
discrepancy of the two approaches could have arisen because
the maximum trophic position measured using stable isotopes
is based on the single, highest value of all taxa examined in
the community, whereas both heuristic food web metrics for
maximum trophic position are integrated estimates of all the
possible links to the top predator, meaning that the heuristic
approach is a more integrated estimate across the entire food
web. Additionally, these differences could have arisen because
of our sampling design, since we targeted functional feeding
groups with sufficient biomass to support stable isotope analysis.
While we assessed all predators in our samples in order to get
the best estimate of maximum trophic position, this approach
means that in September, when we found many more predators
than in December, we increased our chances of finding a
single predator with a high trophic position value, potentially
exacerbating differences between September and December.
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This illustrates why Bayesian mixing models, which integrate
variation in trophic position across all predators (or other
functional feeding groups), are a more robust approach for
measuring trophic position compared to point estimates from
simpler mixing models. Similarly, heuristic food webs, which are
created from DNA-metabarcoding data of the entire community
in the sample, are likely to be a more robust estimate of
maximum trophic position, as these estimates integrate all
members of the community and are less biased to subsampling
of larger individuals.

One of the most promising results emerging from this
study was the finding that trophic position measured from
heuristic food webs predicted trophic position inferred from
stable isotope analysis. Significant variation was explained when
measured across all paired samples (i.e., global models, R2

range: 0.31–0.60; all models p < 0.05), which improved further
(R2 range: 0.34–0.78, all models p < 0.05) when the analysis
was constrained within the metaweb of a specific region and
season (Supplementary Table S6, Figure 5). One caveat of these
models is that the cluster of points at the baselines has
a strong leveraging effect on the linear patterns; when we
examined the models with the baselines removed, patterns were
generally weaker (data not shown). Further, when we explored
models for individual functional feeding groups or maximum
trophic position, patterns were much weaker and often not
significant (Supplementary Table S6). Consequently, it is likely
that heuristic food webs will do a better job at predicting the
trophic structure of an entire community and not necessarily the
specific trophic position of individual consumers or functional
feeding groups. However, it is important to emphasize that
deviation from these linear patterns was predictable, especially
for some functional feeding groups. For example, models using
prey-averaged trophic position consistently underestimated the
trophic position of filter-feeders, while other groups were much
more consistently predicted (Figure 5B). These findings suggest
the possibility of calibrating heuristic food webs using stable
isotope data. While it is impractical—if not impossible—to
collect stable isotope data for all members of a community,
our findings suggest that collecting samples from a few key
functional feeding groups could allow the trophic position of
some groups to be better predicted by heuristic food web
analysis. Importantly, despite some groups (e.g., collector-
gatherers, omnivores) exhibiting a wide range of variation in
their deviation from these linear predictions, estimates of trophic
position for invertebrate predators exhibited the least deviation,
perhaps because they obtain biomass from many different chains
in a food web.

Given that our heuristic food web and stable isotope analyses
did not assess fish and other vertebrate predators feeding higher
in the food web, these taxa represent important groups for
future case studies linking ecological network and stable isotope
approaches. Based on our findings, which indicate that heuristic
food webs best predict the trophic position of invertebrate
predators in models covering a wide range of functional feeding
groups, we hypothesize that including vertebrate predators in
these food webs will (a) improve whole-food web regression
models of trophic position, and (b) lead to more accurate

estimates of trophic position of these vertebrate top predators,
with less trophic deviation, compared to invertebrate predators
and consumers. These hypotheses are contingent upon the scale
of the study, the hydrological connectivity of the system, seasonal
flow dynamics, and the disbursal and trophic specialization of
the taxa studied. For example, in hydrologically distinct systems
where vertebrate predators are disbursal limited or have narrow
trophic niches, trophic position estimates of these predators
will likely be the most accurate, while they should be relatively
weaker in hydrologically interconnected systems with mobile,
generalist predators. A larger-scale study—covering a wider
range of spatially and hydrologically distinct systems—would
likely be needed to assess patterns of mobile predators like fish.
However, given the hydrological interconnection of the GLM
complex and the extreme seasonal dynamics of this system, the
strong trophic position patterns we demonstrate for invertebrate
predators shows the promise of the heuristic food web approach,
even when ideal conditions are not met. If the trophic deviation
patterns we demonstrate hold in different systems, heuristic food
webs might live up to the promise of being a rapid indicator of
both trophic structure and trophic dynamics, which would be
especially useful in biodiverse systems that are difficult to study.

Merging DNA Metabarcoding and
Ecological Network Analysis
Measuring food webs poses a great challenge. Constructing a
food web requires the ability to sample and identify every species
in a system and then to determine, or at least infer, all the
trophic interactions among these species, which requires further
information about species traits (reviewed in Thompson et al.,
2012). These challenges illustrate why so few quality food webs
have been described in the literature (Dunne et al., 2002a).
Here, we have demonstrated the utility of employing a food-
web generating pipeline based on DNA-derived biodiversity
knowledge (Compson et al., 2018). Food webs can be generated
in this manner in a fraction of the time that would otherwise
be needed to quantify a trophic network, especially those
as complex as wetland food webs (Halls, 1997; Millennium
Ecosystem Assessment, 2005); yet, the quality and coverage of
trait information available for the breadth of biodiversity in trait
databases remains heterogeneous and incomplete (reviewed in
Schneider et al., 2019). Our pipeline was therefore based onmany
assumptions about species interactions (detailed in Compson
et al., 2018). Nonetheless, the generated heuristic food webs
performed well as predictors of trophic position derived from
stable isotope analysis, and exhibited similar spatial and temporal
patterns in trophic position compared to those revealed by stable
isotope analysis.

Exploring the composition of biological communities
based on their DNA signature permits rapid acquisition of
sequence-based occurrence data and thus orders of magnitude
more taxonomic information when compared with traditional
microscope-based taxonomy (Gibson et al., 2015). When
this high-resolution biodiversity information is organized
into ecological networks, it yields even more information on
connections among organisms and how this structures the
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food web; understanding the variation in this connectivity
can reveal complex ecological relationships (Winemiller, 1989;
Dunne et al., 2002b; Poisot and Gravel, 2014). Indeed, while
ecological networks have long been proposed as inexpensive
tools for assessment of biostructure (McCann, 2007), the added
resolution DNA-based networks provide can improve their use
as a tool, and even radically change the inferences we make
(Wirta et al., 2014). What is more, using DNA metabarcoding to
assess communities does not always require direct observation of
interactions, as gut contents, blood meal, or feces, for example,
can be sequenced and interactions inferred directly from DNA
metabarcoding results, circumventing the need for laborious
field observations, rearing experiments, or gut content analysis
(Clare et al., 2019). For this reason, genomics approaches are
particularly useful for resolving difficult trophic situations,
such as those involving hard to identify taxa, relationships
involving cryptic species, or interactions with fluid feeders.
These potential advantages of DNA-based ecological networks
are opening a new frontier in ecosystem monitoring, permitting
exploration of how networks change through space and time
in other ecosystems and, importantly, across stronger gradients
of environmental change. Our study demonstrated that strong
seasonal gradients dominate in the GLM complex, but this
system is relatively unimpaired and is hydrologically connected,
so it is not surprising that stronger spatial patterns were not
observed among regions. Further, while our study explored one
important food web metric—trophic position—it is unclear how
this and other food web metrics will relate to ecosystem function.
Certainly, network metrics provide a promising opportunity
to develop novel indicators (sensu Kissling et al., 2018) of
ecosystem change1.

Stable Isotope Analysis and DNA-Based
Ecological Network Analysis:
Complimentary Approaches
One of the more interesting results that emerged from this
study was how the unique information from heuristic food
web analysis and stable isotope analysis provided surprising,
yet complementary results, illuminating the complexity of the
food webs in the GLM complex. While heuristic food web
analysis provided both visual and quantitative data on the relative
structure, size, and complexity of the food webs in the three
regions of our study, stable isotope analysis illuminated the
trophic niche widths and energy pathways of communities in
these regions. For example, while trophic niche widths (based on
stable isotope analysis) differed neither seasonally nor spatially
in our system (Figure 4B), metawebs (based on heuristic food
web analysis) were clearly larger in the wetland region, and across
all regions, became generally smaller later in the year (Figure 2).
One of the explanations for these findings is that heuristic food
webs measure all of the organisms DNA can detect in a system,
whereas stable isotope analysis in our study considered only
dominant taxa (i.e., taxa with enough abundance or biomass to
constitute a composite isotope sample), and this could mean that
while a lot of the rare or non-dominant taxa were reduced (at least
below the levels of DNA detectability) later in the season, the core

food web backbone (sensu Serrano et al., 2009; Lu et al., 2016) was
more resilient to seasonal change in our system, an idea that is
beyond the scope of this study but that warrants more attention.
Future studies might be able to use network principles (e.g., the
friendship paradox; Pires et al., 2017) to identify highly connected
species critical to food webs prior to sampling the entire network,
which could aid in project development, enabling researchers to
identify key community members of a food web to sample for
stable isotope analysis.

Another example of the complementary information stable
isotope and heuristic food web analyses provide is the
finding that—despite the lack of differences in trophic niche
widths across space and time—stable isotopes revealed a
shift in autochthonous reliance from September to December:
the wetland and transition regions generally increased in
autochthonous reliance moving later into the year, while
the mainstem region decreased in autochthonous reliance
(Figure 4A). It is possible that these differing patterns in resource
use could reflect the different flow and productivity dynamics
in the three regions of the GLM complex. In the highly
productive wetland and transition regions, where allochthonous
litter subsidies are probably exhausted or buried in sediments
later in the year, leaf litter is likely less important in the winter;
however, in the mainstem region, where flows are much higher
and ice cover takes longer to establish, tributaries of the SJWR
likely deliver a relatively high allochthonous subsidy later in
the year. Consequently, while food webs were getting relatively
smaller across the regions of the GLM complex throughout
the year, the dominant energy pathways of the food webs
changed in different regions and in different ways, indicating that
seasonality, and potentially other disturbances that reduce food
web size (e.g., Lu et al., 2016), could impact the structure and
function of these ecosystems differently. It should be noted that
while our study used aggregate samples (i.e., many individuals of
a particular taxon made up an isotope sample), one advantage of
stable isotope analysis compared to heuristic food web analysis
is that, when a single sample is taken for each individual, it
is possible to measure the variation among individuals in a
population, enabling the elucidation of intraspecific energy flow
pathways, especially for larger bodied consumers, like fish; in
studies where a more nuanced energy flow assessment is the aim,
the stable isotope and heuristic food web approaches will provide
even more complementary information, with heuristic food webs
providing a broad picture of how all of the organisms in a food
web are connected, and stable isotope analysis elucidating specific
pathways of interest.

Collectively, the complementary information gleaned from
stable isotope and heuristic food web analyses may indicate
important ways communities in the GLM complex function and
utilize resources. Intra- and interspecific competition, ecological
opportunity, and predation all govern among-individual niche
variation, which likely both affects and is affected by community
dynamics (Araújo et al., 2011). Because these mechanisms can
be affected by seasonality in wetlands, where the flood regime
and seasonal drying can exert strong pressures on organisms
and communities (Costa-Pereira et al., 2017), they also likely
influence community niche width, which is linked to ecosystem
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function (Salles et al., 2009). In the GLM complex, which is
subject to late-season drying and early winter ice formation,
these seasonal processes can act to both decrease ecological
opportunity by reducing habitat connectivity and increase
competition by reducing resource availability, two processes
that would have opposite effects on community niche width.
This supposition is congruent with our findings that trophic
niche width differed among regions in neither September (when
habitat connectivity was reduced due to late season drying) nor
December (when habitat connectivity was further reduced by
ice formation), and likely the reduced habitat connectivity by
these events limited any increase in trophic niche width that
could have arisen from increased competition. Our findings
differed from those of another study in the Pantanal wetland,
where habitat constriction in the dry season led to reduced niche
width in a tetra fish population despite increased competition
(Costa-Pereira et al., 2017). The differing patterns found in our
study could be attributed to the fact that habitat constriction
likely impacts the niche width of fish, which are relatively mobile,
more than invertebrates, especially at the scales examined in
our study.

Our results illustrate the complementary nature of DNA-
based network analysis and stable isotope analysis. Stable isotope
analysis provides a longer-term picture of energy flow patterns
of key or dominant taxa, while DNA-based heuristic food
web analysis provides a high-resolution snapshot in time of
the entire community of interest. These two approaches will
likely be synergistic in cases where (1) multiple pressures
drive biodiversity and trophic patterns differently, (2) direct
observation of trophic interactions cannot be made, (3) a
community has a lot of cryptic species that are in competition
or could undergo niche differentiation, (4) general energy
flow pathways can be established with stable isotope mixing
models, but more resolution is required to elucidate the players
responsible for these patterns (e.g., DNA metabarcoding the gut
contents of fish or riparian predators to better resolve aquatic-
terrestrial linkages), and (5) researchers exploring heuristic
food web analysis require additional evidence about interaction
strengths among linkages. Of these potential synergies, the latter
is probably the most challenging, especially in complex food
webs, because while heuristic food webs can accommodate
an unlimited number of basal food web resources, even the
most sophisticated isotopic mixing model is mathematically
constrained by the number of isotopic tracers in the system,
which must also exhibit isotopically distinct signatures (Fry,
2006). Even in cases where food webs are very complex, however,
stable isotopes could elucidate the food web backbone (sensu
Serrano et al., 2009), such that dominant energy pathways of a
food web are quantified. Certainly, interaction strengths among
nodes of heuristic food webs could be quantified in other ways,
including through added abundance or biomass information
(Thompson et al., 2012), mathematical occupancy modeling
with replicate DNA metabarcoding samples (Doi et al., 2019),
probabilistic models of interaction (Morales-Castilla et al., 2015),
or even using relative read abundances (Deagle et al., 2019). How
much this added information will improve heuristic food web
predictions of ecosystem structure and function remains to be

seen and will likely vary based on ecosystem type and spatial and
temporal scales, but this question is at the forefront of the field of
ecological network analysis.

Overcoming the Limitations of DNA-Based
Heuristic Food Webs as a Rapid
Bioassessment Tool
Ecological network analysis has long been argued to be a tool
that could provide inexpensive analysis of biostructure (McCann,
2007), and with the advent of next-generation sequencing
approaches, this tool has the potential to be part of an
analytical pipeline for rapid bioassessment (Gray et al., 2014;
Bohan et al., 2017). At the time of writing, we were unaware
of any international jurisdiction which is actively employing
DNA metabarcoding for biomonitoring purposes or ecological
network analysis. Heuristic food webs—which take ecological
co-occurrence networks and build upon them by integrating
known or measured trait information, such as information about
feeding habits, species interactions, or stable isotopes—present
challenges for use as a rapid bioassessment tool, despite the clear
advantages they provide over simple co-occurrence networks
(e.g., calculation of food web metrics, such as trophic position or
relative network vulnerability).

We have identified five key advances that will overcome
many of the limitations preventing widespread adoption of
DNA-based heuristic food web analysis as a tool for rapid
bioassessment. (1) A more widespread adoption of genomics
tools is needed, particularly among groups in charge of
biomonitoring programs. As standardized field sampling
methods are established for environmental genomics sampling
(e.g., see CABIN and National Ecological Observatory Network
protocols), DNA sequencing technologies are advanced (Singer
et al., 2019), genomics laboratory procedures are refined, and
primers are optimized (sensu Hajibabaei et al., 2019), the cost of
implementing genomics approaches will come down and public
adoption should increase, but technological advancements are
not often readily adopted by resource managers and policy
makers (Darling and Mahon, 2011). Consequently, more needs
to be done to improve biomonitoring of aquatic ecosystems
by bringing stakeholders together, such as GEO BON (www.
geobon.org), GEOSS (www.earthobservations.org), COST
action DNAqua-Net (www.dnaqua.net), and SYNAQUA (www.
interreg-francesuisse.eu) (Hering et al., 2018; Leese et al., 2018;
Lefrançois et al., 2018; Pawlowski et al., 2018). (2) Bioinformatics
pipelines need to be developed, reviewed (sensu Mangul et al.,
2019), and made publicly available via open-source archival
services, like GitHub or SourceForge, and through package
managers, like Bioconda (Grüning et al., 2018). (3) Open-source
databases for both genomic (e.g., BOLD, GenBank) and trait
data (e.g., GloBI, EPA’s Freshwater Biological Traits Database)
need to be improved. Currently, the coverage of these databases
is lacking, especially for understudied systems (Compson et al.,
2018; Curry et al., 2018), but efforts to develop and integrate
databases for ecological network analysis are underway (e.g.,
Poisot et al., 2016; Vissault et al., 2019). (4) We require more
case studies demonstrating the utility of DNA-based network
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and food web analyses and the meaning of their derived
network metrics. Testing these tools will be important in novel
ecosystems, across extreme environmental gradients, and across
large spatial and temporal scales, especially in cases where we
can pair these assessments with measured estimates of ecosystem
function. (5) To facilitate these efforts and to house and curate
the massive amount of data next-generation biomonitoring
will generate (sensu Hey and Trefethen, 2003; Bell et al., 2009),
an international biomonitoring consortium needs to emerge,
with federated centers for data aggregation1. Promisingly,
advancements in any one of these areas will improve the utility
and adoption of DNA-based network approaches, as progress in
these areas will be linked but not necessarily limited by uneven
advancement. Collective advancements made on these five fronts
will enable heuristic food webs to steadily improve in their
resolution, utility, and predictive power.
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Classical biomonitoring techniques have focused primarily on measures linked to

various biodiversity metrics and indicator species. Next-generation biomonitoring (NGB)

describes a suite of tools and approaches that allow the examination of a broader

spectrum of organizational levels—from genes to entire ecosystems. Here, we frame

10 key questions that we envisage will drive the field of NGB over the next decade. While
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not exhaustive, this list covers most of the key challenges facing NGB, and provides the

basis of the next steps for research and implementation in this field. These questions

have been grouped into current- and outlook-related categories, corresponding to the

organization of this paper.

Keywords: eDNA, metabarcoding, biodiversity assessment, artificial intelligence, ecological networks

INTRODUCTION

Classical biomonitoring techniques (Table 1) have focused
primarily onmeasures linked to various biodiversitymetrics (e.g.,
species richness, beta diversity; Li et al., 2010; Gutiérrez-Cánovas
et al., 2019) and indicator species (but see Vandewalle et al., 2010;
Culhane et al., 2014; Saito et al., 2015 for other approaches). Next-
generation biomonitoring (NGB) describes a suite of tools and
approaches that allow the examination of a broader spectrum of
organizational levels—from genes to entire ecosystems. A more
holistic vision of evaluating ecological structure and change has
long been a goal of ecology, but only recently have the tools
emerged to bring it toward fruition. In this issue of Frontiers
in Ecology & Evolution, which explores the research topic, “A
Next Generation of Biomonitoring to Detect Global Ecosystem
Change,” we explore this complementary suite of new tools that
could be forged into a global approach to biomonitoring. In
this overview paper, we attempt to synthesize opinion on the
key issues that are necessary to address en route to this next
generation of biomonitoring tools. We focus on a key subset
of these tools—those based on DNA metabarcoding as a new
standard methodology for multiple taxonomic identifications—
for which the number of papers published has increased
exponentially since 2010 (Figure 1).

DNA metabarcoding generates massive amounts of data on
taxonomic units (e.g., operational taxonomic units, OTUs, or
exact sequence variants, ESVs; Callahan et al., 2017) rapidly, and
these can be linked increasingly to functional attributes (Douglas
et al., 2018; Makiola et al., 2019). DNA metabarcoding is highly
complementary to whole metagenomic and metatranscriptomic
sequencing (Knight et al., 2018), existing sources of ecological
information (Cordier et al., 2018; Derocles et al., 2018) and
classical biomonitoring approaches (Deiner et al., 2017); in all
cases, adding genomic and/or ecological information to the rich
taxonomic lists afforded by DNA metabarcoding would allow
deeper exploration of ecological or biodiversity patterns. This
would move biomonitoring closer to being able to extract both
structural and functional attributes from the same multispecies
sample (Keck et al., 2017; Cordier et al., 2019). By merging
DNA metabarcoding with ecological information and machine
learning approaches, NGB extends modern analytical potential
beyond the classical morphological identification of bioindicator
species. For instance, taxonomic lists from DNA metabarcodes
can identify anthropogenic drivers behind community change
and infer networks of possible ecological interactions and
associated ecosystem properties (Bohan et al., 2017; Compson
et al., 2018). While challenges to constructing these networks
from NGB data remain (e.g., Barner et al., 2018; Freilich et al.,

2018; Deagle et al., 2019), this overview paper discusses some
promising ways of overcoming these limitations, including using
trait filters developed from published literature and methods of
inferring interactions (e.g., machine learning), and these ideas are
developed in more depth in the associated manuscripts of this
special issue. Indeed, the ultimate aim of NGB is to deliver this
more integrated view of natural ecosystems at a fraction of the
time and cost of classical approaches (Baird andHajibabaei, 2012;
Keck et al., 2017; Leese et al., 2018; Cordier et al., 2019). Building
this large-scale monitoring poses many challenging questions,
from the practical and logistical to the political and philosophical.

Here, we frame and describe the interplay of ten key questions
that we envisage will drive the field over the next decade
(Figure 2). Questions 1–7 address issues that are of current
importance, and pertain to the scope of NGB. Questions 8–10 are
questions of outlook and opportunity, exploring where the field
might be going. This list emerged as an overview of the current
Frontiers special issue on the research topic: “A Next Generation
of Biomonitoring to Detect Global Ecosystem Change.” While
not exhaustive it covers most of the key challenges facing
NGB, and provides the basis of the next steps for research and
implementation in this field.

Current Questions
How Can the Benefits of NGB Be Most Successfully

Communicated to Citizens, Scientists, and

Policymakers?
Managing issues of human health, food production and security,
and the intertwined environmental issues of biodiversity and
ecosystem services necessitates biomonitoring (Bush et al., 2019a;
Schmidt-Traub et al., 2019). Information about the status of
these issues, such as changes in the frequency of human (Jones
et al., 2008) and crop diseases (Savary et al., 2019), insect declines
(Hallmann et al., 2017), and losses of species of flowering plants
(Carvell et al., 2006) are expected to lead to profound changes in
human behavior and appreciation of the environment (Schröter
et al., 2017). However, the vision of a broader scale evaluation
of ecosystem change, and the benefits this will bring to citizens,
scientists, and policymakers, needs to be clearly communicated if
wide adoption of NGB approaches is to be realized.

There are three clear benefits of NGB. First, as is argued
across the papers of this Issue, NGB has the potential
to provide a more holistic method of assessment than
classical biomonitoring, affording improved decision-making
and management of issues that affect citizens’ quality of
life. Second, while NGB will provide methods for detailing
the complexity of ecosystems, it will also use methods,
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TABLE 1 | Glossary of terms as used in this paper.

Term Definition

Bioindicator An organism used as an indicator of the qualitative status of the environment or an ecosystem

Classical biomonitoring The methodologies of observing and assessing the state and ongoing changes in ecosystems, components of

biodiversity, and landscape, including the types of natural habitats, populations and species

Community science Public participation in scientific research (citizen science)

DNA barcoding A method of taxonomic identification using a section of DNA from a specific gene or genes (genetic marker)

DNA metabarcoding A method for taxonomic identification of multiple organisms out of a mixed DNA sample. Usually amplifies genetic

markers with universal primers and uses next generation sequencing technologies

Ecological network A representation of biotic interactions in an ecosystem, in which species (nodes) are connected by pairwise

interactions (links). Links can be used to represent any type of ecological interaction, including antagonistic

interactions, such as those of competition and predation (trophic), or mutualistic, such as pollination

Environmental DNA (eDNA) DNA that can be sampled from environments such as water, soil or feces, without the isolation of organisms

Explainable artificial intelligence The set of artificial intelligence methods and techniques producing solutions and results that can be understood

by humans

Hierarchical modeling A statistical model where quantities (observations) are sorted in a hierarchy. The key idea is that inferences made

about one observation affects inferences about the others in the hierarchy. This contrasts with linear-based

methods, where observations are independent

Heuristic food web Synthetic ecological network constructed from species lists where interactions are inferred from traits (e.g.,

published consumer–resource linkages), mathematical rules of interaction, or a combination of both

Machine-learning The study and use of algorithms and statistical models that perform specific tasks without explicit instructions,

using instead inference of data patterns

Metacommunity A set of otherwise distinct communities that interact or are linked by the dispersal of species

Metagenomic sequencing A comprehensive sequencing approach where all genes from all organisms present in a sample or community are

processed

Meta-interpretive learning An inductive logic program that infers (learns) logic programs (rules) from a combination of background knowledge

and examples (observations)

Metatranscriptomic sequencing The sequencing of the total genes expressed (transcribed) from a community of organisms

Network construction One of any number of approaches for inferring taxonomic linkages in a community in order to generate a visual

representation of co-occurrence patterns

Network inference The process of hypothesizing and predicting network structure and topology.

Next-generation biomonitoring The suite of emerging tools and approaches that allow the observation and assessment of the state and ongoing

change in ecological systems across a broader spectrum of organizational levels—from genes to entire

ecosystems

Occupancy modeling A type of hierarchical modeling used to infer probabilities of species presence or absence in sample data where

there is imperfect detection of organisms

Essential Biodiversity Variable (EBV) Basic ecological quantities used to assess local to global change in biodiversity as part of monitoring progress

toward policy goals and the effects of management

Operational Taxonomic Unit (OTU) A pragmatic, operational classification of taxa with closely related DNA sequences into groups

Exact Sequence Variant (ESV) Taxonomic classification where the exact DNA sequence is used for identification as opposed to clustering related

sequences into taxonomic units (i.e., as for OTUs)

Functional traits Key characteristics of individual organisms, whether morphological, structural, biochemical, physiological,

phenological or behavioral, which influence performance and fitness

such as ecological networks, which render this complexity
comprehensible, communicating to citizens the richness of
their local ecosystem and responses to change (Pocock et al.,
2016). Third, NGB can foster citizen participation and buy-
in to biomonitoring if it underpins evidence-based decision-
making (Hodgetts et al., 2018), and projects with high public
participation or strong community science components can
produce tangible change in management (Schröter et al.,
2017). Portable DNA sequencing instruments allow individuals
with relatively little training to generate data; for example,
Quick et al. (2016) used this approach to develop a tool to
monitor the 2015 Ebola outbreak in Central Africa with a
24 h response time. Similar kits are being developed for use

by members of the public to monitor local plant and human
disease prevalence and the status of pests in agricultural fields
and waterways.

For policy, NGB will not only achieve what classical
biomonitoring currently does, such as by reporting on agreed
classic indicator species or assemblages, but will also allow the
inference and prediction of higher level ecosystem properties
(Evans et al., 2016; Compson et al., 2019). In principle,
NGB could facilitate remedial decision-making, allowing
its accompanying management to be trialed before it is
implemented. NGB has the potential to enable monitoring
of changes in ecosystem structure and function in something
close to real time, because large elements of biomonitoring
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FIGURE 1 | Exponential rise in the number of published, peer-reviewed

articles (A) and the number of citations of these articles (B) about

next-generation biomonitoring. Figures depict data obtained through a

systematic query of the Web of Science database using the Boolean search:

“*monitoring” AND “*DNA” AND “metabarcoding”.

can be automated, reducing the latencies and biases in human-
dependent biomonitoring (Quick et al., 2016; Bohan et al., 2017),
bringing science one step closer to the vision of biomonitoring
any ecosystem in any biome of the globe. Large coverage
would also help to avoid some of the “shocks” associated with
the loss or the sharp decline of keystone species and major
ecosystem processes long after a tipping point has occurred
(Intergovernmental Science-Policy Platform on Biodiversity
and Ecosystem Services, IPBES1). Finally, the generality of
NGB enables fusing of multiple areas of biomonitoring that
are currently distinct and managed separately. Monitoring
of disease, invasions, climate, and land-use change could be
undertaken simultaneously, greatly reducing the cost of NGB
by pooling resources and sharing expenses. This would, in turn,
increase the amount of biomonitoring that might be done,
increasing its efficiency.

Despite these potential benefits, which have become apparent,
adoption of the latest methodologies into management and

1www.ipbes.net/assessment-reports (accessed May 30, 2019).

decision-making processes has been slow, often hindered
by miscommunication between research/scientists and
management/policy partners (Darling and Mahon, 2011).
Nevertheless, the number of initiatives for a global-scale
biomonitoring of biodiversity that maximize cooperation
and communication between scientists, policymakers and
citizens is increasing. These include the development of new
indicators, such as Essential Biodiversity Variables (EBVs,
Kissling et al., 2018), ontologies for global biomonitoring
(Global Infrastructures for Supporting Biodiversity, GLOBIS-B),
storage and linking of data-sets (Global Biodiversity Information
Facility, GBIF2), and routes into global scale policy (Group on
Earth Observations Biodiversity Observation Network, GEO
BON3; Global Earth Observation System of Services, GEOSS4).
Scientists working on NGB should participate actively in these
efforts. For example, the EU Co-Operation in Science and
Technology (COST) action DNAqua-Net5 gathers scientists in
order to improve biomonitoring of aquatic ecosystems (Leese
et al., 2018; Pawlowski et al., 2018), and has a working group
dedicated to the discussion of regulatory and policy frameworks
where scientists and stakeholders work collaboratively (Hering
et al., 2018). The Interreg European Regional Development
Fund project Synergie transfrontalière pour la bio-surveillance
et la préservation des écosystèmes Aquatiques (SYNAQUA6)
shares a similar aim to gather panels of stakeholders to design
scenarios for future NGB implementation for freshwater
ecosystem biomonitoring in France and Switzerland (Lefrançois
et al., 2018). The benefits of NGB should, in turn, leverage
new policy, providing a better fit into the current regulatory
and policy frameworks for the more “complex” metrics and
indicators of ecosystem structure, function, and services. The
role of science and scientists should be to critically appraise the
development of the NGB approach and, in so doing, advocate
for the benefits of NGB and establish a dialogue between
relevant biomonitoring scientists, citizens, industry end-users,
and policymakers.

What Is the Appropriate Spatio-Temporal Scale for

NGB?
A recurrent message of the papers in this issue is that the
scales of biomonitoring, both in terms of spatial extent and
temporal frequency of sampling, need to be greatly enlarged
if we are to appropriately monitor and assess the risks to
ecosystems (see Ovaskainen et al., 2019), identify and evaluate
the core drivers of ecosystem dynamics and stability, and make
decisions for their management. This will require solutions to
some of the practical framework problems that limit the scales of
the current generation of biomonitoring approaches, including
socio-economic, political, and local management issues.

2www.gbif.org (accessed May 30, 2019).
3www.geobon.org (accessed May 30, 2019).
4http://www.earthobservations.org/ (accessed May 30, 2019).
5www.dnaqua.net (accessed May 30, 2019)
6www.interreg-francesuisse.eu/beneficiaire/synaqua-synergie-transfrontaliere-
pour-la-bio-surveillance-et-la-preservation-des-ecosystemes-aquatiques
(accessed May 30, 2019)
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FIGURE 2 | Diagrammatic representation of the interplay between the Key questions for next-generation biomonitoring presented in this paper. Next-generation

biomonitoring (NGB) is based on a holistic view of ecosystems through integrating new technologies and exploring synergies with existing data sources. For its

realization, it will be necessary to both automate many bioassessment processes and separate the steps of biodiversity detection and explanation of

ecosystem change.

Current biomonitoring is heavily skewed toward terrestrial
Europe, North America, Australia, and New Zealand (Cavallo
et al., 2019; McGee et al., 2019). This is due, in part, to a lack of
expertise in biomonitoring and interpretation in many countries,
a global shortage of finance, as well as a limited acceptance of

conventional methods. One avenue that might contribute to a
solution, besides better communication of NGB (see Question
1), is to simplify the biomonitoring process into component
steps. NGB would consist of two essential steps: (1) sample
collection and the detection of ecosystem change; and then, only
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where change is detected, (2) explanation and prediction. Such
separation would greatly reduce the need for expertise in all
parts of the globe. Automated and high-throughput sampling
and detection of change would take place at large temporal and
spatial scales, including parts of the globe with poor coverage at
present (using field technicians, citizen scientists, or drones), with
the expertise to explain any detected change being outsourced
to regional centers of excellence, much as already exists for the
World Health Organization Regional Offices and the networks of
experts they support (WHO7). The two-stage process would also
lower costs for a given scale of coverage, thus making better use
of the available finance. A challenging framework question will
be what the definition of “change” is, which may vary between
different countries and regions. Having the necessary, near-real-
time assessments of change is something that is currently only
achievable using the NGB approach.

While it is clear that scalability and reusability of global
biomonitoring data are necessary to answer large-scale ecological
management questions, this can only be achieved where the
steps of sampling and detection of change are automated and
standardized, making data machine-readable so that information
from different systems is comparable and shareable, and can
be integrated with other, existing sources of environmental and
ecological information (Poisot et al., 2016, 2019). Automating
the process of taxa identification, network construction and
inference, and comparison to reference states will require
considerable technological development (Bohan et al., 2017;
Lausch et al., 2018).

Environmental DNA (eDNA) describes genomic materials
shed from organisms into their environment that represent
the “template” for NGB analysis. eDNA data quality can be
influenced by almost every step in the taxa identification
workflow (Zinger et al., 2019), from sample collection (Dickie
et al., 2018), DNA extraction (Lear et al., 2018), choice of gene
or target region, selection of Taq polymerase, polymerase chain
reaction (PCR) cycling protocol, primer, choice of sequencing
platform, bioinformatic pipelines (Deiner et al., 2017; Makiola
et al., 2018; Bush et al., 2019a; Pauvert et al., 2019), and taxonomic
reference databases utilized (Porter and Hajibabaei, 2018). These
potential challenges compound with the myriad context-specific
influences on the ecology of eDNA, such as abiotic and biotic
influences on eDNA production, degradation, and transport in
the environment (Barnes and Turner, 2016). Standardization
or calibration of sampling protocols and other methods in the
workflow can improve reproducibility by allowing compilation
and comparison of data from across studies (Dickie et al.,
2018). Such standardization can be attractive for the majority of
users, being both cheap and efficient, even where their research
needs differ, as has been successfully demonstrated in The Earth
Microbiome Project8 (Thompson et al., 2017) and the Global
ARMS (Autonomous Reef Monitoring Structures) Program9

(Ransome et al., 2017).

7www.who.int/ (accessed May 30, 2019).
8www.earthmicrobiome.org (accessed May 30, 2019)
9www.oceanarms.org (accessed May 30, 2019)

To tap the full potential of biomonitoring data, it will be
necessary to improve curation and access to the rich reference
datasets that have already been generated. Due in part to specific
institutional regulations, there is a lot of genetic reference
material that is only available to researchers within certain
institutions. Since molecular-based identifications are heavily
dependent on the quality and completeness of the reference
databases, this research field will collectively benefit from
incentives to curate and upload reference sequences to publicly
available databases. Ensuring that these datasets are available
in a usable format to interested researchers across the globe
represents a major challenge to the field, but one which must be
met in order to address global changes in biodiversity and species
distribution (Poisot et al., 2016, 2019; Desjardins-Proulx et al.,
2019). The definition of the ontologies that will allow NGB data
to be machine-read and automated, assuring quality control and
the integration of metadata from biomonitoring and associated
disciplines, has begun but requires large-scale adoption across
fields to be useful.

Knowledge from existing sources (e.g., remote sensing,
chemical screening, trait databases) could be integrated into
NGB via machine-readable ontologies to generate data synergies
and explore novel ecological questions (Bohan et al., 2017;
Lausch et al., 2018). For example, this approach could be
used to supplement DNA taxa lists with functional trait
information for the development of more advanced, predictive
heuristic network models (sensu, Compson et al., 2018), while
simultaneously creating new—and supplementing existing—
databases of taxonomic traits, such as organismal body size or
trophic linkages (Kissling et al., 2018). Since the integration
of multiple traits and bioindicators holds one of the biggest
potential synergies, a possible answer to this question could
be working with other initiatives, such as GLOBIS-B, GEO
BON, GBIF (Canhos et al., 2015), and the Aquatic eDNA
Atlas Project10, as noted in Question 1, toward a common,
decentralized, global biodiversity data platform.

What Is the Most Productive Balance Between

Case-Specific and Generic NGB Methodologies?
One promise of NGB is to provide general biomonitoring
methodologies and comparisons across potentially any
ecosystem, including those currently poorly studied or unknown.
The search for rationalized, common approaches has begun in
certain disciplines, including in aquatic environments (Goldberg
et al., 2016), but as the field matures more general guides or
approaches may be achievable. Ecosystems are ecologically
distinct, but each has unique scales of operation that should
be reflected in the spatial scales, frequencies, and replication
of sampling. The scales of application of biomonitoring are
currently constrained by the methodology used, with most
survey methods designed to assess local taxonomic groups
of interest. This leads to methodological heterogeneity across
regions (Borja et al., 2009; Birk et al., 2012), encumbering efforts
to scale up to regional or national levels (Voulvoulis et al., 2017).

10www.fs.fed.us/rm/boise/AWAE/projects/the-aquatic-eDNAtlas-project.html
(accessed May 30, 2019).
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Two approaches might be adopted to standardize NGB
methodologies. The first would be to sample at the finest spatial
resolution possible—at high frequency, in any or all ecosystems
across the globe—to store copious amounts of data and to invest
in the computational hardware and bioinformatics to detect,
forecast, and monitor change. This approach would produce
datasets that are both close to complete and an invaluable
monitoring and ecological resource, with as yet unforeseen
benefits, but the data would come at the cost of collection
and curation that may not warrant the increase in efficacy,
especially where the detection of system change or changing
processes does not require such high-resolution data. However,
with plummeting costs this approach will likely be increasingly
feasible in the future.

The alternative approach would build upon generic
expectations of the rate and temporal dynamics of change
in order to identify the required frequency of sampling. The
spatial scales of sample independence and representation might
then be identified across examples of the ecosystem, indicating
appropriate levels of replication to assure detection, with an
appropriate power, of given levels of acceptable change. Ma
et al. (2018a) described generic, multiscale approaches adopted
from the theory of networks to examine temporal and spatial
variation. These approaches treat network structure as essentially
being independent of the taxa involved in the networks, and
use network profiling, null models, and multilayer networks
to make statements about the expected level of change that is
and is not acceptable in pure network structural terms. This
information can then be fed into ecological modeling and robust
forecasting studies.

A standardized but general methodology for sampling would
maximize scalability, interpretability, and impact of NGB. It
is unlikely, however, that the specification of sampling would
conveniently lead to a common set of results for all ecosystems to
be examined. Rather, any generality that might exist would likely
be limited to some combination of the biome being sampled
(i.e., air, soil, water), and the organizational (i.e., regional and
local networks, communities, species, populations, individuals,
or genes) and taxonomic levels. Generality may only be delivered
by an ecological understanding of ecosystem structure, probably
facilitated by network approaches.

What Are the Appropriate Indicators of Change?
To move biomonitoring forward, science and policy need to
explore how: (1) NGB information could lead to new indicators
for metacommunities; (2) novel indicators build upon and
contribute to existing indicators and frameworks (e.g., Tapolczai
et al., 2019); and (3) spatio-temporal metacommunity scales
influence the interpretation of these novel indicators. The
indicator concept proposes that the ecological state of an
ecosystem can be evaluated by observing a particular taxon
or taxonomic group or function (De Cáceres and Legendre,
2009). Taxon-free indicator metrics, such as Indices of Biotic
Integrity (IBI), are appealing to environmental practitioners
and policymakers because they distill a lot of information
down to a simple metric that, in principle, can be compared
across systems. However, their simplicity is likely the reason

why such metrics may be misused in practice (Seegert, 2000).
Further, while indicator species or IBIs might be useful at local
spatial scales, they are not applicable across the many habitats,
ecosystems, or biomes (Angermeier et al., 2000) that can be
monitored using next-generation methods. Pairing molecular-
based approaches with machine learning for NGB can potentially
recover orders of magnitude more information in biomonitoring
data, thus eliminating many of the constraints that hindered
the development of biomonitoring indicators we use today.
For example, building ecological networks from this recovered
data might be used to analyze whole-network properties with
ecosystem functions and services (Evans et al., 2016), providing
a mechanistic link between network structural change and
ecological functions. There certainly is a lot of work to be done
to explore and develop these higher-level, network indicators,
as well as to determine which network properties will be useful
for predicting ecosystem consequences to environmental change.
Once developed, however, these tools should provide immediate
added-value to the taxonomic lists generated by NGB, as well as
to the classical, biomonitoring approaches, especially considering
the cost effectiveness of routine, open-source pipelines for the
rapid calculation of such (e.g., ecological network) indicators.

Scaling up from a local- to a large-scale approach should
furthermore incorporate recent advances in metacommunity
ecology into biomonitoring, in order to make sense of the
connections that exist among communities across landscapes.
Leibold and Chase (2017) expounded the compelling argument
that we should combine previously competing concepts of
community assembly, such as neutral theory, species sorting,
patch dynamics, and mass effects into a single, overarching
theory. Ecosystem biomonitoring is strongly rooted in local
observation and a normative interpretation, yet it often fails to
take into account spatio-temporal variability and connections
among sampled localities, arguably leading to over-interpretation
of local-scale deviations from a putative “normal state” (Baattrup-
Pedersen et al., 2017). We may also underestimate the influence
of metacommunity effects on the drivers of local dynamics and,
consequently, biomonitoring observations. The scale-limited
spatio-temporal scope of biomonitoring studies also carries a
serious risk of missing large-scale phenomena that could have
potentially devastating impacts, such as biological invasions
(Kamenova et al., 2017) or global declines in insects (Hallmann
et al., 2017) that went largely unnoticed in policy for nearly 30
years (IPBES1). DNA-based approaches offer a potential avenue
to address this challenge, and we should seize the opportunity
to both develop NGB methods by further refinement and
testing and promote these methods to policymakers, citing their
many benefits.

How Will NGB Benefit From Machine-Learning

Approaches?
Statistical methods for extracting information from data
represent some of the basic tools that ecologists wield. Standard
statistics are used to explore the covariation between dependent
and independent variables and to test hypotheses of interaction.
Machine-learning approaches work analogously, exploring the
probabilistic or logical correlations across matrices of species

Frontiers in Environmental Science | www.frontiersin.org 7 January 2020 | Volume 7 | Article 19797

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Makiola et al. Questions for Next-Generation Biomonitoring

data. Machine learning of networks has been successfully
applied to classical, macro-ecological sample data (e.g., Bohan
et al., 2011) and to evaluate ecosystem responses to changed
management (Ma et al., 2018b). In contrast, the reconstruction of
microbial networks or the inference of networks and trophic links
from DNA data has proven to be more difficult (Barner et al.,
2018; Freilich et al., 2018; Deagle et al., 2019), with results that
appear to depend upon a combination of the machine learning
technique and the data used. No one algorithm will work best for
every problem, mirroring the “no free lunch” theorem ofWolpert
and Macready (1997). The rhetorical question, “How will NGB
benefit from machine-learning approaches?,” is one that we can
answer only by continual work to further develop and integrate
ever better learning approaches into ecology and biomonitoring.

Because NGB represents an emerging field, it is useful to
look at examples where machine learning and metabarcoding
have been successfully combined. Naïve Bayesian and random
forest classifiers have been used to make taxonomic assignments
from metabarcodes, produce statistical measures of confidence,
and reduce rates of false positive identifications (Wang
et al., 2007). Supervised machine learning has been used to
classify environmental samples in a meta-analysis of microbial
community samples collected by hundreds of researchers for the
Earth Microbiome Project (Thompson et al., 2017). Recently,
eDNA datasets have been analyzed using supervised machine
learning to predict the status of aquatic ecosystems (Cordier
et al., 2018). The combination of taxonomy-free molecular data
and machine-learning techniques outperformed biomonitoring
methods based on the screening of known indicator species by
classic metabarcoding (Cordier et al., 2018).

Moving toward the reconstruction of networks of explicit
interactions is a logical next step that would afford an
ecological explanation of change. Such ecological network
reconstruction would require the incorporation of background
knowledge or information, for example, about species traits or
existing interactions (Tamaddoni-Nezhad et al., 2013, 2015).
Taxon interaction knowledge can be text-mined from direct
observations recorded in the literature, or inferred from
published trait information, and, when used to reconstruct
interaction networks such as food webs, offer the potential
to generate new biomonitoring metrics derived from network
properties (Compson et al., 2018). Recent results suggest that,
in the absence of background information, model-free inference
of network structure is also feasible using information from
the overall network structure and those interactions that are
known (Stock et al., 2017). Hypotheses or explicit models for how
species interact can also be incorporated intomachine learning as
background knowledge (Tamaddoni-Nezhad et al., 2013, 2015).
As symbolic representations of interactions, these hypotheses
and models have the benefit of rendering the machine-learning
output human-comprehensible and explainable for decision-
making and prediction (Muggleton et al., 2018). The challenge for
this model-based approach is that we have relatively few symbolic
descriptions of species interactions for organisms, especially
in understudied biomes. While there are rules for trophic
interactions between macro-organisms, for example, based upon
body- or gape-size (Jonsson et al., 2018), there are few such rules

for microorganisms. The generation of hypotheses for potentially
new mechanisms of interaction in understudied systems could
also be supported by artificial intelligence: first, using text mining
to recover information about taxa and functions that is not
readily accessible from reference databases like Global Biotic
Interactions (GloBI) or the United States Geological Survey
(USGS) traits database; and then by employingmachine learning,
such as Meta-Interpretive Learning (Tamaddoni-Nezhad et al.,
2015), to hypothesize interaction rules that explain the text-
mined information and metabarcoding data.

Considerable amounts of this kind of information exist in
literature databases such as Google Scholar, Academic Search
Premier, and Web of Science. Unfortunately, the publishing
rights to these data are often difficult for scientists to disentangle,
and the various text-mining exercises that have been conducted
have been treated as hacking attacks, which are resisted. Until
these publishing rights are relaxed, such as is proposed in Europe
(Enserink, 2018), populating many ecosystems with biological
and functional information will remain a limitation.

What Are the Key Technical Challenges to the

Advancement of NGB?
NGB aims to detect and explain changes in the total biodiversity
of ecosystems to understand and predict the ecological structure
of ecosystems. This requires that NGB methods generate
accurate data for the presence, absence, and abundance of taxa.
Uncertainty in the detection of a taxon, as false negatives or
positives, can lead to erroneous conclusions with consequences
that could impair biomonitoring and decision making. As noted
in Question 3, detection uncertainty can arise from multiple
sources, such as sampling, laboratory, and bioinformatics, and
these have been extensively reviewed elsewhere (e.g., Deiner
et al., 2017; Knight et al., 2018; Larsson et al., 2018; Lear
et al., 2018; Porter and Hajibabaei, 2018; Zinger et al., 2019).
Work to reduce rates of false negatives and positives in DNA
metabarcoding data is an active field of research, and progress
has been made through using occupancy modeling (Ficetola
et al., 2015, 2016) and probability distribution modeling for tag
jumping and contamination issues (Larsson et al., 2018).

The next logical step is to ask whether DNA concentrations
in the environment relate to organismal abundance or biomass.
The question is intuitive, in the sense that a greater abundance
or biomass of organisms should, in principle, produce a higher
concentration of DNA, but as with detection uncertainty DNA
concentration is determined by many other factors. Studies
have demonstrated that the relative abundance of an organism
between samples can relate to eDNA concentrations (Takahara
et al., 2012; Thomas et al., 2016; Piñol et al., 2019). However,
the leap from relative abundance to absolute abundance (or
anything close) has been confounded by multiple effects,
including an inability to distinguish between live and dead
biomass, the observation that different age classes of the same
organism release DNA at different rates into the environment
(Maruyama et al., 2014), and an increased awareness of
the complex environmental interactions of eDNA, relating to
its origin, state, transport, and fate (Cristescu and Hebert,
2018). How to treat read count data is critical now that
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microbiome datasets are understood to be compositional in
nature and sensitive to library size and several other biases
(Gloor et al., 2017). For NGB it is clear that we need to
establish how DNA technologies relate to absolute organismal
abundance and how we can minimize methodological biases
through best practices (e.g., Knight et al., 2018). However, the
debate about the confidence to be invested in metabarcoding
data will likely continue until we attain technical advances,
such as PCR-free sequencing systems, curated and complete
reference databases, and modeling that can explain and correct
for errors.

How Can NGB Be Applied to Risk Management?
With further development of NGB, multiple lines of evidence and
data will need to be combined in real time to provide managers
with cost-effective tools needed to make robust decisions and
mitigate impacts on the natural environment. To incorporate
these multiple sources of information and move beyond purely
descriptive models of ecosystem structure and change, such
as eDNA-derived lists of taxa and co-occurrence networks, it
will be necessary both to develop explanatory and predictive
models of ecosystem function and services, and to test, explore,
and understand these models, possibly using developments in
text-mining (Compson et al., 2018) and Explainable Artificial
Intelligence (Miller, 2019; Rudin, 2019).

As the “universe of observation” (Bush et al., 2019b) expands
toward a more integrative ecosystem approach, driven by the
growing capacity of molecular and analytical methods, it remains
unclear what amount of information will be needed tomake good
management decisions. For example, how much do we benefit
if we incorporate all possible data, or do we just add noise?
The application of DNA-isolation from bulk environmental
samples or mixed communities coupled with high throughput
sequencing and automated taxonomic assignment removesmany
of the taxonomic constraints currently hindering biomonitoring,
particularly for multiple trophic groups and otherwise cryptic
groups of organisms (Hug et al., 2016). Increasing taxonomic
resolution and greater sampling intensity expands the number
of observed biological units. This greater volume of information
will also require a parallel expansion of our abilities to interpret
biodiversity changes.

Artificial intelligence, in the form of machine learning
algorithms such as Meta-interpretive Learning, can help process
these large amounts of information and aid in hypothesizing
explanatory models of interaction that humans can comprehend
and machines can read symbolically (Tamaddoni-Nezhad et al.,
2015). The explanations used in biomonitoring will evolve from
existing concepts of ecosystem indicators and indices that do
not attempt to explain the reason for changes in ecosystems
(Derocles et al., 2018) toward models that provide a holistic view
of ecological change, such as EBVs (Jetz et al., 2019); models that
provide an understanding of the underlying mechanisms behind
ecosystem functions; and models that recognize the complex and
dynamic nature of ecosystems, including all trophic levels and
their interactions. This evolution of biomonitoring, moving from
a descriptive toward a predictive risk management tool, based
on new hypotheses and models, will have the greatest impact

on decision and policy making, which will in turn feed-back
to biomonitoring.

Outlook Questions
To this point, the questions posed have focused on contemporary
issues about the framework of NGB, as well as technical and
conceptual challenges to implementing NGB (Figure 2). We also
foresee rapid advancement in this field beyond what is needed
to establish NGB as a biomonitoring approach, facilitating
exploration of new frontiers of science and providing solutions
to some of the problems we have outlined in this article.
These are related, in large part, to rapid developments in
computing and genomics. Specifically, we believe that three
areas of advancement in biodiversity assessment and analytical
capacity will drastically improve NGB: (1) advances in genomics
tools that will lead to greater sequencing capacity, providing
unprecedented recovery of information from DNA (Question
8); (2) advances in computing, bioinformatics, and open-source
pipelines (Question 9); and, (3) improved models that will allow
for more targeted use by practitioners interested in adopting
NGB approaches (Question 10).

What Are the Most Promising Future Advancements

in Genomics Tools?
Many widely used, next-generation sequencing technologies have
attained greater sequencing depth (i.e., the product of the number
of reads and the read length standardized to the genome length)
despite using shorter read lengths by exponentially increasing
the amount of sequences generated (Sims et al., 2014). We
anticipate a next-next-generation revolution that will achieve
whole genome sequencing for entire communities, with enough
sequencing depth to provide information about individual
sequence variation necessary to begin exploration of evolutionary
and functional questions in conjunction with NGB. Already,
technologies are emerging that provide orders of magnitude
more sequencing depth than current platforms. For example,
a single flow cell of Illumina’s Novaseq platform can generate
∼700 times greater sequencing depth than is typically available,
allowing for the detection of dramatically more diversity, even at
coarse taxonomic levels; standardizing sequencing depth using
patterned flow cells further improves sequencing performance
by preventing the merging of neighboring sequences (Singer
et al., 2019). Eventually, as such platforms advance, shotgun
sequencing will become the norm, and the need for PCR
will be circumvented, eliminating many of the issues currently
associated with sequencing and subsequent data processing.
Such advances in sequencing capacity and error reduction
will translate to higher detection probabilities, greater coverage
of species, and better assessments of abundance and rare or
endangered species in all systems, including those that are remote
and difficult to access or under-studied. Additionally, we foresee
three new frontiers of science that the added information from
new sequencing technologies will enable us to explore.

First, greater sequencing depth across a larger complement
of the community will make it possible to construct robust
phylogenetic trees for entire communities, which will help
advance NGB method development by providing better
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phylogenetic information for improving ecological information
and prediction. The practice of metaphylogenetics is currently
limited by short sequence read lengths (i.e., normally ∼150–300
base pairs). Furthermore, PCR and primer choice can greatly
influence the resultant community (Hajibabaei et al., 2019),
leading to coarse and unresolved phylogenetic trees. With
greater sequencing depth, these limitations will become a thing
of the past, allowing for more robust phylogenetic analysis.
Community assembly can only be understood in the context
of species’ evolutionary histories, and such an advance in
phylogenetic community ecology will not only be crucial for
advancement of ecological theory, but also improve the current
standards of biodiversity assessment, allowing for a more holistic
exploration of rare or unknown taxa in hyperdiverse, poorly
studied ecosystems (Papadopoulou et al., 2015).

Second, future platforms will improve sequencing depth
per individual such that it will soon be possible to assess
intraspecific genetic variation in an assemblage. To date, studies
of population genetics have been limited by primer development
for target organisms, focusing on no more than a few taxa
at a time in order to answer very specific questions. For
example, mitochondrial metagenomics approaches that combine
shotgun sequencing and DNA metabarcoding allow for read
mapping that may provide the quantitative information on
intraspecific genetic variation needed to assess population
genetic structure (reviewed in Crampton-Platt et al., 2016). In
combination with DNA metabarcoding (sensu, Elbrecht et al.,
2018), these approaches would then make it possible to assess
the genetic structure of any taxa of interest in the community,
and enable practitioners to ask questions about the entire
metacommunity and test macroecological theory (e.g., species-
genetic diversity correlations).

Third, enhanced sequencing depth will allow for a wider
exploration of functional genes in environmental samples. This
would make it possible to map functional genes to taxa for
entire communities of organisms, linking communities and
networks with broad-scale ecosystem assessment of function.
Recent efforts have attempted to utilize machine learning to link
genus-level predictions of function inmicrobial communities, for
example by using Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt), for inferential
assessments of function and hypothesis generation (Douglas
et al., 2018). With more sequence data and better inferential
methodologies, machine learning in biomonitoring will progress.
Concurrent efforts to expand and annotate functional gene
databases (e.g., Kyoto Encyclopedia of Genes and Genomes,
KEGG11) are facilitating the mapping of genes to function
across a wide range of biodiversity, bringing incredible
added value to projects using the greater sequencing depth
afforded by newer sequencing platforms. As these efforts
advance, not only will metacommunity and ecosystem theory
be advanced by linking structure to function at multiple
scales of observation, but potentially transformative changes
in biomonitoring and biodiversity assessment will occur, as
functional profiles could have greater discriminatory power for

11www.genome.jp/kegg (accessed May 30, 2019).

detecting change compared to taxonomic profiles, especially in
cases where taxonomic profiles are highly variable.

What Are the Most Promising Future Advancements

in Computing and Bioinformatics?
With unprecedented data generation, NGB practitioners will
be confronted with the enormous task of dealing with an
overwhelming amount of information (Keck et al., 2017).
Advances in computing and bioinformatics are required to
maximize the use of this biodiversity information. Much work
still needs to be done to test for and correct errors that inherently
emerge from bioinformatics approaches (reviewed in Olson et al.,
2017). One solution is to quantitatively assess genome assembly
by incorporating evolutionary expectations of gene content,
using single copy orthologs (Seppey et al., 2019). These problems
of genome assembly and amplification bias will eventually
be eliminated as whole-genome sequencing approaches are
adopted, but this will, in turn, require even more sophisticated
bioinformatics tools (e.g., NanoPack, De Coster et al., 2018).

Another area that will benefit greatly from advances
in computing and bioinformatics is database generation,
maintenance, and expansion. Existing taxonomic, trait, and
functional gene databases (e.g., GenBank, GloBI, KEGG) are
incomplete, and the task of updating and expanding these
databases is daunting. Artificial intelligence could also be used to
advance data discovery (Gonzalez et al., 2016; Compson et al.,
2018). Text-mining pipelines, for example, currently make use
of open-source, artificial intelligence tools (e.g., OrganismTagger:
Naderi et al., 2011). The consequent improvements that these
tools will make to taxonomic and functional databases will lead
to further advancements of biomonitoring tools, such as cloud-
based, rapid ecological network and food web construction,
driving a virtuous cycle where more robust datasets lead to
improved models.

The promise of these advancements will only be met, however,
via improvements in data accessibility, data discoverability, and
development of data standards. These will likely emerge from
consortiums developing ontologies for genomics and other data
(reviewed by Levy and Myers, 2016), as noted in Questions 1
and 3. More work needs to be done, in particular, to develop,
peer-review, and publish open-source tools for bioinformatics
pipelines (Mangul et al., 2019). Without parallel improvements
in tool archival and version control, the improvements that
should follow will be inconsistent, reducing their utility and
widespread adoption. This work would likely be facilitated by
open-source archival services (e.g., GitHub or SourceForge) or
package managers (e.g., Bioconda, Grüning et al., 2018).

What Are the Most Promising Future Advancements

in Modeling for Addressing Targeted Questions?
While genomic and technological advancements will affect
the field of biodiversity assessment, advances in modeling
will specifically help end-users, including regulators and
resource managers, using NGB approaches. For example, as
the costs of sample and bioinformatic processing reduce,
more sophisticated hierarchical occupancy models could be
applied to repeated sampling data to quantify detection
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probabilities and inform practitioners about the sampling effort
required to answer system-specific questions. These models,
which can account for multiple categorical factors influencing
a response variable, can accommodate samples of repeated
presence-absence data to provide estimates of occurrence and
detection probabilities of species and communities, enabling
to account for false negatives due to imperfect detection
(Campos-Cerqueira and Aide, 2016; Steenweg et al., 2016),
a limitation that is seldom considered in bioassessment
studies (McClenaghan et al., 2019). Occupancy modeling could
also provide a way past the critical limitation of current
DNA metabarcoding—that of obtaining absolute abundance
information. Applied hierarchical occupancy modeling has
been used to address questions related to the detection and
abundance of species (Kery and Andrew Royle, 2015), and
future genomic and technical advancements will broaden the
application of these models via the generation of larger
datasets covering wider ranges and along more gradients of
environmental change. Hierarchical occupancy models will
enable further leveraging of these more robust datasets by
incorporating variation in the pathway from sample collection
to sequencing and bioinformatics. Detection probabilities, for
example, can be built into Bayesian hierarchical models to
detect probabilities associated with different primers, sequencing
approaches, and other steps along the sampling-to-sequencing
pathway (Doi et al., 2019), providing NGB practitioners with
better experiments that make more efficient use of resources
(Lugg et al., 2018).

As the field of NGB evolves, we foresee synergistic
advancements frommerging occupancy-modeling and machine-
learning approaches with additional layers of information coded
in DNA, recovered by improved sequencing technologies and
greater sequencing depth. Incorporating relative read abundance
information into occupancy models could be used to assess the
abundance of functional gene classes in environmental samples.
Shotgun sequencing will also remove the constraints and biases
of PCR amplification of DNA, leading to better estimates of
sample abundance and biomass (Bista et al., 2018). Much of

this information could be incorporated into ecological networks
and heuristic food webs to estimate interaction strengths and
calculate probabilities of interaction (Morales-Castilla et al.,
2015). Finally, with increases in occupancy and food web model
sophistication, and as more data are generated that capitalize
on these approaches, there will be increasing volumes of high-
quality information to feed into machine learning algorithms,
leading to more predictive modeling of diverse ecosystems
and an unprecedented opportunity for NGB practitioners
to anticipate change and prevent ecosystem impairment in
real time.
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The kingdom Fungi is a megadiverse group represented in all ecosystem types. The

global diversity and distribution of fungal taxa are poorly known, in part due to the

limitations related to traditional fruit-body survey methods. These previous hurdles are

now being overcome by rapidly developing DNA-based surveys. Past fungal DNA

surveys have predominantly examined soil samples, which capture high species diversity

but represent only the local soil community. Recent work has shown that DNA samples

collected from the air with cyclone samplers provide information on fungal diversity at

the scale of some tens of kilometers around the sampling location. To test the feasibility

of air sampling for investigating global patterns of fungal diversity, we established a new

initiative called the Global Spore Sampling Project (GSSP). The GSSP currently involves

50 sampling locations distributed on all continents, with each location collecting two 24-h

samples per week. Here we describe the GSSP methodology, including the sampling,

DNA extraction and sequencing protocols, and the bioinformatics pipeline. We further

report results based on 75 pilot samples from five locations, of which three in Europe,

one in Australia, and one in Greenland. The results show highly consistent patterns,

suggesting that GSSP holds much promise for systematic global fungal monitoring.

The GSSP provides highly standardized sampling across space and time, enabling

much-improved estimation of total fungal diversity, the global distribution of different

fungal groups, fungal fruiting phenology, and the extent of long-distance dispersal

in fungi.

Keywords: biomonitoring, cyclone sampler, environmental DNA, fungi, global diversity
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INTRODUCTION

Species in the megadiverse fungal kingdom play fundamental
roles in ecosystem functioning as mutualists, decomposers,
and pathogens. Over 80% of land plants establish mutualistic
associations with mycorrhizal fungi (Wang and Qiu, 2006),
which facilitate mineral and water uptake (Smith and Read,
2008). Saprotrophic fungi are primary decomposers of the
organic matter in terrestrial ecosystems (Baldrian and Valášková,
2008). Pathogenic fungi have important implications for human
health and food production (Almeida et al., 2019). Despite
their importance, our knowledge of global fungal diversity and
biogeography is minimal. While ca. 100,000 species of fungi
have been described, estimates of global species richness vary
between 0.5 and 10 million (Hawksworth and Lücking, 2017).
Furthermore, current knowledge on the diversity and ecology
of fungi is biased toward those groups producing macroscopic
structures (mostly those producing visible fruiting bodies), even
if the diversity of microscopic fungi is vastly greater.

The recent proliferation of environmental DNA based studies
have overcome many limitations of fruiting body-based surveys,
advancing knowledge of large-scale patterns of fungal diversity
(e.g., Sato et al., 2012; Tedersoo et al., 2014; Barberán et al.,
2015; Davison et al., 2015). To date, most fungal biogeographical
studies have focused on soil communities (but see Barberán et al.,
2015) even if different substrates (e.g., wood, litter) support very
different assemblages. Furthermore, large-scale fungal studies
have mostly been based on samples acquired from distant sites,
although it is known that fungal communities can exhibit high
spatial variation at very small spatial scales (Hazard et al., 2012;
Kubartová et al., 2012). Thus, there are major knowledge gaps
regarding the large-scale distributions of fungi, in particular of
fungi other than those inhabiting soil.

Since many fungi disperse by windborne spores, DNA surveys
based on aerial samples provide an alternative for characterizing
the regional fungal composition. As demonstrated by Abrego
et al. (2018), aerial sampling can simultaneously sample fungi
growing on diverse substrates, while providing a regional scale
perspective of some tens of kilometers. To test the feasibility
of air sampling for investigating the global patterns of fungal
diversity, we established an initiative called the Global Spore
Sampling Project (GSSP). We first made a preliminary survey
to identify researchers who would be interested in joining the
project as sampling teams, and then selected the sampling teams
so that we achievedmaximal global coverage. Additional partners
were encouraged to join if they were able to purchase the
sampling equipment themselves. The GSSP currently involves
fifty sampling locations distributed across all continents, with
each location collecting two 24-h samples per week.

The GSSP project is designed to address research questions
of both fundamental and applied nature. To start with, by
examining accumulation curves for operational taxonomical
units (OTUs) within and among locations, it will improve
estimates of fungal diversity. With the help of taxonomic
placement of the unknown OTUs (Abarenkov et al., 2018), GSSP
will further help to reveal those groups of fungi that are least
represented in taxonomy and sequence reference databases. Most

importantly, it will provide a much-improved view of global
fungal biogeography, shedding light e.g. on how fungal diversity
changes along latitude. Based on research on soil fungi, such
patterns may deviate substantially from those in other organisms
(Tedersoo et al., 2014). Furthermore, these global data may
reveal the distributions and temporal dynamics of fungi affecting
humans, such as pathogenic fungi causing diseases or infecting
crop plants.

In this paper, we describe the GSSP methodology, including
the sampling, DNA extraction, sequencing, and concentration
estimation protocols, and the bioinformatics pipeline.We further
report results based on 75 pilot samples from five locations, of
which three in Europe, one in Australia, and one in Greenland.

METHODS

The Global Spore Sampling Project (GSSP) is a globally
distributed network of sampling locations (Figure 1) equipped
with a cyclone sampler (Burkard Cyclone Sampler for Field
Operation, Burkard Manufacturing Co Ltd; http://burkard.co.
uk/product/cyclone-sampler-for-field-operation; Emberlin and
Baboonian, 1995). The current network includes fifty sampling
locations that cover all continents, but is most dense in Europe
(Figure 1). At each sampling location, two 24-h samples are
taken each week. Although sampling was planned to start
synchronously in October 2018, realized sampling was initiated
earlier at a few localities and later in some other localities
(Figure 1). The sampling locations represent varying latitudes
and altitudes. Some samplers are located in urban environments,
while others are positioned in natural environments (e.g.,
forests, tundra).

In this paper, we utilize 75 samples collected during the
pilot phase of GSSP from five sites (Figure 1). More details
on these samples, such as the description of the sampling
locations as well as the timing of the sampling, are given in
Supplementary Information.

Sampling Protocol
Air DNA samples were acquired using cyclone samplers placed
at ground level to ensure free airflow through the sampler.
The cyclone sampler (shown in Figure 1) orientates itself in the
direction of the wind and collects all particles from the air with
a single reverse flow cyclone. The sampler collects particles with
size >1µm from the air directly into a sampling tube, including
spores, pollen, bacteria, and small insects. The sampler’s average
air throughput is 16.5 liters per minute for a total of 23,800
liters during each 24-h sampling period. Sterile 1.5ml Eppendorf
vials were used as sampling tubes. After sampling, the vial was
removed from the cyclone sampler, the lid was closed, and the
vials were labeled with the site code and week number. Likewise,
the time and duration of the sampling, as well as notes about
the presence of rainwater or larger objects (e.g., arthropods),
were recorded. Every week, two 24-h samples (henceforth called
Sample A and Sample B) were collected from each site. To avoid
contamination, gloves were used while handling the samples or
the device. Sampling teams were instructed to clean the cyclone
part of the device monthly with water and soap and to rinse it
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FIGURE 1 | GSSP sampling locations (A) and the increase in the number of sampling locations over time (B). The five locations from which the pilot data analyzed in

this paper originate are indicated by white dots. (C) Shows the cyclone sampler connected to a car battery.

with ethanol, or to sterilize it with dry-heat, chlorine or UV when
such equipment was available.

The samples were stored at −20◦C until they were shipped
to the University of Helsinki, Finland. Shipping was at room
temperature as the shipping time was relatively short and
refrigerated transport would be costly. In Helsinki, visible
arthropods were removed from the samples. To avoid losing
fungal spores attached to the arthropod bodies, their surface
was rinsed by adding sterile water into the sample tube and
vortexing. After washing, the arthropods were removed with
sterile tweezers. Samples with rainwater were dried in a freeze
drier (24 h, −80◦C, 0.57 mbar) covered with a porous Parafilm
to avoid cross-contamination between samples. After drying, all
samples were sent to the University of Guelph, Canada, for DNA
extraction and sequencing.

DNA Extraction, Primers, and Sequencing
Upon receipt, each sample tube was accessioned and assigned a
unique Process ID. DNA extraction followed Ivanova et al. (2008)
with minor modifications. Two hundred seventy microlitre of
ILB (700mM GuSCN, 30mM EDTA pH 8.0, 30mM Tris–
HCl pH 8.0, 0.5% Triton R© X-100, 5% Tween-20) with 30 µl
Proteinase K (20 mg/ml) was added to each collection tube
before it was gently rotated to wash spores off the tube walls
and lid, and the tube was then centrifuged at 11,000 g for 5 s.
The resultant pellet was re-suspended by gentle pipetting, and
the entire volume was transferred to a Lysing Matrix A tube
(MP-BIO). Tissue was ground in a TissueLyser (Qiagen) for
2min at 28Hz. Samples were then incubated for 1 h at 56◦C,
followed by 1 h at 65◦C. Lysates were transferred to a MN
block containing 600 µl of 5M GuSCN Binding Buffer (5M
GuSCN, 16.66mM EDTA pH 8.0, 8.33mM Tris–HCl pH 6.4,
3.33% Triton R© X-100), and the entire volume was transferred
in two equal aliquots of 350 µl (each followed by centrifugation

at 5,000 xg) onto AcroPrep 96 Filter Plates with 3.0µm glass
fiber media/0.2µmBio-Inert membrane, followed by two washes
withWB buffer (60% ethanol, 50mMNaCl, 10mMTris–HCl pH
7.4, 0.5mM EDTA pH 8.0). DNA was eluted in 45 µl of 10mM
Tris-HCl pH 8.0.

Synthetic Positive Control
We applied a synthetic positive control approach (also
called spiking approach), with the aim of translating the
raw sequence counts into more quantitative estimates of
DNA amount. The nine positive control plasmids were
prepared from synthetic sequences that are generally
consistent with fungal ITS sequences, yet different from
all known natural sequences (Palmer et al., 2018). These
contained ITS3 (GCATCGATGAAGAACGCAGC) and
ITS4 (TCCTCCGCTTATTGATATGC) priming sites (White
et al., 1990), and were synthetized as gBlocks at Integrated
DNA Technologies (IDT). PCR products were amplified
using Platinum Taq and cloned into TOPO4 vector using

TOPO
TM

TA Cloning
TM

Kit for Sequencing, with One Shot
TM

TOP10 Chemically Competent Escherichia coli (Invitrogen)
following manufacturer’s instructions. Resulting clones were
validated by Sanger sequencing, and each selected clone
containing the desired insert was grown in 100ml of liquid
LB media with 150µg/ml ampicillin. Plasmid DNA was
extracted as described using standard protocols (Sambrook
et al., 1989) with minor modifications. Plasmid DNA
concentration was normalized using BR Qubit dsDNA kit
and qPCR, resulting in a pool containing all nine plasmids
at 0.01 ng/µl.

Estimating DNA Concentration With qPCR
As an alternative approach to the synthetic positive controls,
we also estimated the DNA concentration on each sample

Frontiers in Ecology and Evolution | www.frontiersin.org 3 January 2020 | Volume 7 | Article 511107

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Ovaskainen et al. The Global Spore Sampling Project

using qPCR with a serial dilution of AMPtk plasmids. The
target genetic marker ITS2 rDNA for fungi and plants
was amplified using the Polymerase Chain Reaction (PCR)
for 45 cycles on LightCycler96 (Roche). Each of the 12
µl reactions contained 6 µl of FastStart Essential DNA
Green Master (Roche), 1.2 µl of each 10µM primers
(forward primer consisted of a cocktail of ITS_S2F and
ITS3 mixed 1:1, ITS4 was used as single reverse primer), 1.6
µl of ddH2O and 2 µl of genomic DNA. Standard curve
DNA dilutions for 0.01 ng/µl, 0.001 ng/µl, 0.0001 ng/µ
were generated in three replicates using AMPtk plasmids
DNA. The thermocycling profile consisted of denaturation
at 95◦C for 10min; 55 cycles of 95◦C for 10 s, 51◦C for
10 s, 72◦C−40 s; melting: 95◦C for 10 s, 65◦C for 60 s,
97◦C−1 s. Absolute quantification analysis was performed
in LightCycler96 software v1.1.

Next Generation Sequencing Workflow
CCDB PCR Master Mix with Platinum Taq was prepared
as described in Hebert et al. (2013). The total reaction
volume was 12.5 µl and contained 10.5 µl of MMix and
2 µl of DNA template. The positive synthetic control (0.01
ng/ µl) containing nine plasmids was spiked into the PCR
mastermix at a 1:100 ratio. The target genetic marker ITS2
rDNA was amplified using the Polymerase Chain Reaction
(PCR) for 20 cycles with fusion primers ITS_S2F (Chen
et al., 2010), ITS3 and ITS4 (White et al., 1990) tailed with
Illumina adapters:

ITS_S2F-mis
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATG
CGATACTTGGTGTGAAT

ITS3-mis
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCA
TCGATGAAGAACGCAGC

ITS4-mis
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACA
GTCCTCCGCTTATTGATATGC

PCR products were diluted 2x, and a volume of 2 µl of the
diluted product was used in second round PCR amplification
with Index 1 and Index 2 fusion primers containing i5 and
i7 Nextera indices for dual-indexed PCR: https://support.
illumina.com/content/dam/illumina-support/documents/
documentation/chemistry_documentation/experiment-design/
illumina-adapter-sequences-1000000002694-11.pdf.

The thermocycling for Platinum Taq PCR1 consisted of
initial denaturation at 94◦C for 2min followed by 20 cycles
of: denaturation at 94◦C−1min; annealing at 51◦C– 1min;
extension at 72◦C for 1min; final extension at 72◦C for 5min.
PCR2 with indexed Illumina primers consisted of 30 cycles of
initial denaturation at 94◦C for 2min followed by 20 cycles
of: denaturation at 94◦C−1min; annealing at 60◦C– 1min;
extension at 72◦C for 1min; final extension at 72◦C for 5min.
DNA template and indexed primer transfers were done on a
Biomek FXP robot.

The library was pooled without normalization and purified
using Ampure beads (Agencourt, Beckman Coulter) with 0.8:1

beads/PCR product ratio and sequenced on Illumina MiSeq
following manufacturer’s instructions with 25% spike of PhiX.

Bioinformatics Pipeline
Raw Illumina data were paired using Geneious Prime
2019.0.4, short sequences (<100 bp) were discarded
and 5′-end and 3′-end were trimmed by quality (QV20)
using BBDuk. The following bioinformatics workflow
was used to process paired-end data: Cutadapt (v1.8.1)
was used to trim primer sequences; Sickle (v1.33) was
used for filtering (<200 bp) and Uclust (v1.2.22q) was
used to cluster OTUs with 98% similarity threshold and
minimum coverage 2.

We denote the total number of sequences obtained for sample
i by ni and henceforth refer to it as the sequencing depth. Only
those samples for which the sequencing depth was at least 10,000
were included. Clusters that corresponded to the spikes were
identified using Ublast with 95% similarity threshold. We denote
by sij the number of sequences that were assigned to the spike j
(with j = 1, . . . , 11), by si =

∑
j sij the total number of spike

sequences in sample i, and by mi = ni − si the number of
sequences not assigned to the spikes. The amount of fungal DNA
in each sample was estimated by wi = mi/si, with the caveat
that some mi sequences may not represent fungal DNA. With
this definition, wi measures the amount of fungal DNA in units
relative to the spike (presuming no inhibition or competition
for PCR reagents). As the total input of spike DNA was ca.
0.001 ng (1/100 volume of 0.01 ng/µl (10.4 µl) spiked into
1,040 µl PCR mix before adding DNA), e.g., wi = 24 would
theoretically correspond to a sample containing 0.024 ng of DNA
in 2 µl of template DNA added to the reaction, indicating a DNA
concentration of 0.012 ng/µl. During DNA extraction 78% of
lysate was used for binding so total DNA yield can be calculated
as 0.012 ng/µl ∗45 µl (elution volume), resulting in 0.54 ng
in the 78% of the used lysate or 0.69 ng in the total initial
sample. As the cyclone sampler processes 24 m3 of air in 24 h,
the value of wi = 24 would theoretically correspond to 0.029
ng of fungal DNA per cubic meter of air. However, we note that
this calculation assumes that all DNA amplifies equally across
spikes and species, whereas many factors may cause variation in
it (Polz and Cavanaugh, 1998; Sipos et al., 2007; Berry et al., 2011;
Kennedy et al., 2014).

For the mi sequences that were not assigned to the spikes
and thus represented DNA, a probabilistic taxonomic placement
was performed with PROTAX (Somervuo et al., 2017). The
specific implementation of PROTAX to fungal identification
(Abarenkov et al., 2018) is based on a taxonomy database
that includes ca. 130,000 species, and a reference database
with about 420,000 reference sequences that represent 22,300
species. We recorded for each query sequence the most likely
taxonomic identity at the levels of phylum, class, order, family,
genus, and species, and the uncertainty in these assignments
as measured by probabilistic placement. We note that the
uncertainty estimates of PROTAX account for the possibility that
the species might be unknown to science (i.e., not included in the
taxonomy database), or known to science but lacking reference
sequences (Somervuo et al., 2017; Abarenkov et al., 2018). We

Frontiers in Ecology and Evolution | www.frontiersin.org 4 January 2020 | Volume 7 | Article 511108

https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/experiment-design/illumina-adapter-sequences-1000000002694-11.pdf
https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/experiment-design/illumina-adapter-sequences-1000000002694-11.pdf
https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/experiment-design/illumina-adapter-sequences-1000000002694-11.pdf
https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/experiment-design/illumina-adapter-sequences-1000000002694-11.pdf
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Ovaskainen et al. The Global Spore Sampling Project

followed Somervuo et al. (2017) in treating an identification
as plausible if the probability of taxonomic placement was
>50%, and reliable if the probability of taxonomic placement
was >90%.

Statistical Analyses of the Pilot Data
The statistical analyses were aimed at testing the feasibility of
the method in surveying local species communities. Given the
lack of controlled mock-community data, the assessment on the

reliability of the GSSP pipeline is based on the consistency of
observed patterns, especially on the comparison of samples from
the five sampling locations.

First, to examine how consistently different spikes were
captured among the samples, we defined the relative spike
proportion as ŝij = sij/si. We performed an analysis of
variance to examine how much of the variation among
the relative spike proportions was explained by spike
identity j.

FIGURE 2 | Exploration of the pilot data. (A) Shows the relative spike proportions ŝij . (B) Compares the amount of DNA as measured by qPCR (x-axis) to the

sequencing-based measure w (y-axis), both log10-transformed (R2 of linear regression 0.79). (C) Shows the proportion of samples and (D) the number of distinct taxa

that could be identified at each taxonomic level. In (C,D) open circles refer to plausibly identified taxa (probability of correct taxonomic placement >50%), whereas

closed dots refer to reliably identified taxa (probability of correct taxonomic placement >90%). In (C,D) black circles represent pooled samples, and other colors to

locations-specific samples. (E) Shows the amount of DNA, measured by log10 wi , with samples sorted by location.
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Second, to validate the accuracy of the sequence-based
estimate of fungal DNA amount (wi), we compared it to the
qPCR-based estimate of fungal DNA amount (see above) with
the help of linear regression. To identify variation in DNA
amount over orders of magnitude, we log10 transformed both the
sequence- and the qPCR-based estimates.

Third, we used generalized linear models to examine variation
in the estimated amount of DNA (wi) and OTU richness among
the samples. For amount of DNA, we fitted a linear model where
the response variable was log10 wi. For OTU richness, we fitted
a negative binomial model. In both models, the explanatory
variables were the sampling location, the presence of insects
in the sample, the presence of water in the sample, and the
log10 transformed number of sequences, i.e., the sequencing
depth. While the samples were collected over several months
and thus contain seasonal variation, we expected that most
of the variation would be explained by the sampling location
and that the three European sampling locations would yield
similar amounts of DNA and OTU richness compared to the
Greenland and Australian samples. We further expected that the
treatment of the samples due to insects or water might influence
the amount of fungal DNA and consequently OTU richness.
As we normalized the samples by the spiking approach, we
did not expect sequencing depth to have an influence on the
estimated amount of DNA, but we expected that OTU richness
may increase with sequencing depth.

Fourth, to examine how reliably the sequences could be
identified, we computed the proportion of sequences that could
be either plausibly or reliably identified for each taxonomic level
and each sampling location. To examine how much diversity the
samples contained, we computed for each taxonomic level and
each sampling location the numbers of distinct OTUs that could
be plausibly or reliably identified.

Fifth, to examine how community composition varied
among the five locations, we employed a non-metric
multidimensional scaling. For the community data we used
gij, defined as the number of sequences in sample i that were
plausibly (with probability >50%) identified to the genus
j. To account for sequencing depth and the variation that
covered many orders of magnitude, we transformed the data as
yij = log

(
(gij + 1)/(ni + 1)

)
. The non-metric multidimensional

scaling was performed using Euclidian distance by the sammon
function of the MASS R-package with the default settings as
sammon(dist(y)). We further used the anosim function to
test whether the five locations separated in the ordination
space. We note that the NMDS analyses are aimed primarily
for illustrating the data, and that we plan to apply more
rigorous model-based analyses (see e.g., Gloor et al., 2017;
Ovaskainen et al., 2017) after we have obtained data from
all localities.

RESULTS

Among the 75 samples, 73 yielded >10,000 sequences with a
mean of 52,000 sequences (standard deviation = 10,000; range=
25,000–67,000). The results below are based on the 3.8 million

sequences represented by the 73 samples, whereas the two
samples with <10,000 sequences are excluded.

Does the Use of Spikes Allow Accurate
Estimation of DNA Amount?
Different spikes generated very different sequence proportions,
ranging from ca. 0.05 to 0.20 (Figure 2A). These proportions
were found to be stable since in the linear model spike identity
explained R2 = 0.88 (p < 0.001, df = 8, df-residual = 648,
F = 646) of the variance among the proportions (reflected
by the clear separation of the boxes in Figure 2A). The use
of the spikes allowed very accurate estimation of the amount
of fungal DNA, shown by the fact that the sequence-based
estimate correlated very closely with the qPCR-based estimate
(Figure 2B). The proportion of fungal DNA sequences (i.e., non-
spike sequences) varied greatly among the samples: the median
proportion was 24.9%, the minimum proportion 0.1%, and
the maximum proportion 99.7%. Consequently, the estimated
amount of DNA varied by five orders of magnitude among
the samples, ranging from 0.001 to 264 units of spike DNA,
corresponding to from 1.2e-6 to 0.3 ng of fungal DNA per cubic
meter of air.

How Much Diversity Was Detected in the
Samples?
The taxonomic placement was generally successful up to the
family level, as 75% of the sequences were reliably, and 85%
were plausibly, identified (Figure 2C). As expected, due to the
incompleteness of the reference databases (Abarenkov et al.,

FIGURE 3 | NMDS ordination of the pilot data. Each dot corresponds to one

sample. The color indicates sampling location, the size of the sample

corresponds to the amount of DNA (measured by wi ), while the black dots

mark samples that contained an insect. The final stress achieved in the NMDS

was 0.061.
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FIGURE 4 | Krona-wheels illustrating taxonomic distributions in the samples. Shown are the results for pooled samples from Switzerland (A) and pooled samples from

Greenland (B). Similar Krona-wheels for all five sampling locations (that can be interactively explored by the user e.g., to zoom to certain taxa) are given in

Supplementary Information. The colors show the type and confidence level of each taxonomical placement. Colors 1–3 correspond to well-identified taxonomic

units for which the proportion of reliable identifications is in the range [50%...100%] (Color 1), (0%...50%) (Color 2), or 0% (Color 3). Colors 4–6 correspond to

unknown taxonomic units for which the proportion of reliable identifications is in the range [50%...100%] (Color 4), (0%...50%) (Color 5), or 0% (Color 6).

2018), a large proportion of the sequences remained unidentified
at the genus and especially species levels. The samples yielded
considerable taxonomic diversity, totalling about 1,000 species
that could be plausibly identified (Figure 2D). The true diversity
is likely much higher as many sequences remained unidentified
at the species level and thus were not included in this estimate.

4088 OTU sequences representing 130,309 sequences (3.5%
of all sequences) were assigned to unknown phyla in fungal
classification. The best BLAST hits of these sequences against
Genbank suggest that 66% of them belong to Viridiplantae, 18%
to Fungi, 11% toMetazoa, 3% toOomycetes, and 1% to Alveolata.

How Did Fungal Communities Vary Among
the Sampling Locations?
The samples from the three European locations had consistently
high levels of fungal DNA, whereas those from Australia and
Greenland did not (Figure 2E). Variation in DNA amount was
not explained by the presence of water (p = 0.50), insects (p
= 0.49), or sequencing depth (p = 0.19), but location had a
major effect (p < 0.001, R2 = 0.56, df = 4, df-residual = 68, F
= 22). Similarly, variation in OTU richness was not explained
by the presence of water (p = 0.08), insects (p = 0.69), or
sequencing depth (p = 0.99), but location had a major effect (p
< 0.001, df = 4, df-residual = 68, null deviance = 161, residual
deviance = 87). The NMDS suggested consistent variation in
fungal community composition, as the five locations separated
in the ordination space (anosim, p < 0.001), including the three

European samples from neighboring countries (Figure 3). The
Australian and Greenland samples were close in the NMDS
plot because we chose to use a Euclidean distance metric and
samples from both of these locations contained little DNA and
low species diversity. The NMDS further suggested that the
removal of insects did not influence the fungal communities e.g.,
due to introducing contamination, as the samples that contained
insects did not deviate systematically from those that lacked
them (Figure 3).

In terms of taxonomic composition, all samples were
dominated by Ascomycota, but they also contained a substantial
proportion of Basidiomycota, and the Greenland samples also
Zygomygota (Figure 4). We note that samples from all five
locations consistently contained a high proportion of the
genus Cladosporium.

DISCUSSION

The results of the present pilot study are encouraging in three
ways. First, DNA was obtained from nearly all samples, and
sequence characterization recovered a substantial taxonomic
diversity despite the small number of samples. Second, we could
quantify DNA concentrations consistently by two methods, even
if DNA amount was generally low and varied over five orders of
magnitude. Third, the results showed a strong biological signal
as samples were consistent at each site, suggesting low levels
of contamination or other problems related to the workflow.
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Community composition was well separated over space among
the three neighboring countries of Europe. This result is
consistent with an earlier study (Abrego et al., 2018), which
showed that air samples represent the regional diversity of fungi
procuding airborne spores at some tens of kilometers around the
sampling site. However, themore precise spatial scale represented
by the samples needs to be determined by further studies, such as
sampling at different distances from known point sources.

The success of the pilot study suggests that the GSSP project
has great promise for improving knowledge of fungal diversity
and distribution at a global scale, with the caveat that GSSP
is limited to those fungi only that can sampled from the air.
Importantly, the results are quantitative in the sense that one can
ask how many times more common (in terms of the number of
ITS sequences) a species is in a sample from a particular location
and time than in samples from another location and time. This
will allow incorporating abundance information in many kinds
of analyses. Since spores may disperse over very long distances,
the presence of the species in a sample does not necessarily mean
that it is part of the local fungal community. Thus, if using the
data to construct “species lists,” it will be important to separate
local spore sources from long-distance dispersal. This can be
done by accounting for sequence abundance, and in particular
repeated occurrence of species at the same location. Conversely,
examining the amount and origin of DNA that does not originate
from the local community (e.g., samples acquired during winter
in the arctic regions) will allow quantitative estimation of long-
distance dispersal in fungi under current air circulation patterns.

The abundance of Cladosporium species at all sampling
locations raises the possibility of contamination (Czurda et al.,
2016). What speaks against this is that the total amount of
DNA varied by five orders of magnitude among the samples,
while the proportion of Cladosporium remained relatively stable.
If its presence is due to contamination, one would expect the
Greenland and Australian samples (with little DNA) to be
dominated by it, whereas the other samples with much DNA
would be less influenced. However, no such pattern was observed.
Cladosporium spores are wind-dispersed and they are known to
be very abundant in outdoor air (Harvey, 1967; Kurkela, 1997),
and thus we consider their consistent presence in our samples
biologically plausible.

To conclude, our pilot study suggests that the GSSP will
contribute a fungal dimension to the increasing number of
global trapping efforts combined with DNA methods, such as
the Global Malaise Trap Program (https://biodiversitygenomics.
net/projects/gmp/) or the African Soil Microbiology Project
(Wild, 2016). Within the fungal realm, the program will add
an important airborne perspective to ongoing perspectives

focused on soil (Tedersoo et al., 2014; Bahram et al., 2018) and
water (http://pk.emu.ee/en/structure/hydrobiologyandfishery/
research/projects/international-projects/funaqua/). While we
have focused here on fungal diversity, samples collected by
the GSSP network can potentially also be utilized for other
taxonomic groups such as plants where the same sampling
method has been succesfully applied (Brennan et al., 2019).
The GSSP network is open to new sampling teams, and thus
we encourage new members to join (https://www.helsinki.fi/en/
projects/lifeplan), especially from locations that are currently
poorly covered.
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Many nematode species are parasitic and threaten the health of plants and animals,
including humans, on a global scale. Advances in DNA sequencing techniques
have allowed for the rapid and accurate identification of many organisms including
nematodes. However, the steps taken from sample collection in the field to molecular
analysis and identification can take many days and depend on access to both
immovable equipment and a specialized laboratory. Here, we present a protocol to
genetically identify nematodes using 18S SSU rRNA sequencing using the MinION,
a portable third generation sequencer, and proof that it is possible to perform all the
molecular preparations on a fully portable molecular biology lab – the Bentolab. We
show that both parasitic and free-living nematode species (Anisakis simplex, Panagrellus
redivivus, Turbatrix aceti, and Caenorhabditis elegans) can be identified with a 96–100%
accuracy compared to Sanger sequencing, requiring only 10–15 min of sequencing.
This protocol is an essential first step toward genetically identifying nematodes in the
field from complex natural environments (such as feces, soil, or marine sediments). This
increased accessibility could in turn improve global information of nematode presence
and distribution, aiding near-real-time global biomonitoring.

Keywords: MinION, DNA barcoding, biomonitoring, 18S (SSU) rRNA gene, Anisakis simplex, Panagrellus redivivus,
Turbatrix aceti, Caenorhabditis elegans

INTRODUCTION

Nematodes are one of the most abundant groups of metazoan organisms (Seesao et al., 2017). It is
estimated that less than 4% of nematode species are currently known to science, with global species
richness estimated between 106 and 108 (Lambshead, 2004). Many of these species are parasites
that threaten the health of plants and animals, including humans. For example, the World Health
Organization estimates that worldwide infections with soil-transmitted nematodes cause a human
annual disease burden of 3.8 million years lost to disabilities (YLD), a disease burden in the same
range as HIV/AIDS (4 million YLD) and twice as high as malaria (1.7 million YLD)1.

Morphological identification is commonly used to identify nematode species, but also has
significant drawbacks. For example, easily distinguishable morphological characters are scarce
in nematodes, making identification difficult, time-consuming and often unsuccessful to genus
or species level (Decraemer and Baujard, 1998; Lawton et al., 1998; Karanastasi et al., 2001;
Lambshead, 2004; Hope and Aryuthaka, 2009). As a result, genetic identification is becoming

1Global Health Estimates 2016: Disease burden by Cause, Age, Sex, by Country and by Region, 2000–2016. Geneva, World
Health Organization; 2018 [online] https://www.who.int/healthinfo/global_burden_disease/estimates/en/index1.html.
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increasingly important in nematology. There have been increased
efforts in recent years to resolve the genetic taxonomy of
nematodes and barcode nematode species using markers
including the 18S small subunit ribosomal RNA gene (18S SSU
rRNA), the 28S large subunit ribosomal RNA gene (28S LSU
rRNA), the cytochrome oxidase I gene (COI) and the internal
transcribed spacer (ITS) regions of the ribosomal RNA locus
(Blaxter et al., 1998; Bhadury et al., 2006a,b; Hunt et al., 2016;
O’Neil et al., 2017; Seesao et al., 2017; Pafčo et al., 2018).

The majority of these studies used Sanger sequencing but
currently there are many sequencing technologies that have
become more accessible and affordable for a wide array of
applications (Kircher and Kelso, 2010; Van Dijk et al., 2014;
Goodwin et al., 2016) such as high-throughput sequencing (HTS)
and third generation sequencing (TGS). The latter is defined
as single-molecule real-time sequencing (Van Dijk et al., 2014).
Massive multiplexing of DNA barcode markers generates a
great reduction of per sample sequencing costs and labor time
compared to Sanger sequencing (Schuster, 2008; Shokralla et al.,
2015). In this paper we explore TGS as an exciting opportunity
for novel applications, such as near real-time biomonitoring of
parasites, particularly nematodes.

A promising TGS platform is the MinION, introduced in
2014 by Oxford Nanopore Technologies (ONT). The MinION
is a portable and compact USB-powered sequencer, generating
long reads which can be base called in real-time (Jain et al.,
2016). It utilizes a nanopore placed in a biological membrane
through which DNA fragments are driven (Deamer et al.,
2016), generating a difference in electrical current which can
be measured and translated to different DNA bases. More in
depth explanation of how the MinION works can be found
in reviews by Plesivkova et al. (2019) and Krehenwinkel et al.
(2019b). The MinION’s portable nature makes it ideal for field
research, proven by sequencing efforts in extreme conditions
like the Arctic (Edwards et al., 2016; Goordial et al., 2017),
Antarctic (Johnson et al., 2017) and the International Space
Station (McIntyre et al., 2016). Shotgun genomic sequencing
in a national park in Wales identified closely related plant
species (Parker et al., 2017) and DNA barcoding (reviewed in
Krehenwinkel et al., 2019b) has allowed for the identification of
a variety of vertebrates in a rainforest in Ecuador (Pomerantz
et al., 2018) and a rainforest in Tanzania (Menegon et al., 2017),
all within hours of collection. Furthermore, the sequencer has
successfully been used for real-time detection of Ebola virus
during the 2014–2015 Ebola outbreak in West-Africa (Quick
et al., 2016), Zika virus in Brazil (Faria et al., 2017; Quick
et al., 2017), and the current outbreak of nCoV-20192, which
is an important step toward actionable clinical diagnostics.
The most popular application of the MinION sequencer so far
is the identification of viral or bacterial populations through
metagenomics of the 16S rRNA gene (e.g., Greninger et al.,
2015; Quick et al., 2015; Benítez-Páez et al., 2016; Schmidt
et al., 2017), but metazoan parasites such as nematodes have not
yet been examined.

2https://nanoporetech.com/about-us/news/novel-coronavirus-ncov-2019-
information-and-updates; https://artic.network/ncov-2019

In this paper we highlight the first step toward sequencing
nematodes in situ, by genetically identifying parasitic and free-
living nematode species with the MinION and testing a portable
molecular lab. Specifically, we had four objectives and we sought
to: (1) optimize existing 18S SSU rRNA primer sets for MinION
sequencing of nematodes; (2) genetically identify nematode
species with the MinION; (3) compare the MinION sequencing
data to Sanger sequencing data, to assess the quality of MinION
data and; (4) test whether we could achieve these results using a
portable molecular laboratory, the Bentolab.

MATERIALS AND METHODS

Barcode Testing With Known Species
We tested DNA barcoding on four different nematode species,
Anisakis simplex, Panagrellus redivivus, Turbatrix aceti, and
Caenorhabditis elegans. These species represent a subset of
parasitic and free-living species with diverse lifestyles.

Anisakis simplex was dissected from fresh mackerel and stored
in 70% ethanol, and one individual nematode was selected
for DNA extraction. A. simplex is a marine parasite that uses
crustaceans as intermediate hosts to infect teleosts and squids
(Anderson, 2000). Although humans are accidental hosts for
Anisakis spp., there has been a dramatic increase over the last
decades in the reported prevalence of anisakiasis, a serious
zoonotic disease (Chai et al., 2005).

Panagrellus redivivus was harvested from a fresh culture
growing on oatmeal medium and used for DNA extraction.
P. redivivus is a free-living nematode that has been used
as a model system to study organ development, signal
transduction, and toxicology and recently had its full
genome and transcriptome sequenced (Srinivasan et al., 2013).
The species is amongst others suggested as a comparative
model for Strongyloides, as parasitic taxa are typically
difficult to culture and analyze independently of their hosts
(Blaxter et al., 1998).

Turbatrix aceti was harvested from a fresh culture in an
apple cider vinegar medium and used for DNA extraction. The
nematodes were washed in distilled water three times before DNA
extraction, to mitigate an inhibiting effect of the vinegar medium
on the subsequent Polymerase Chain Reaction (PCR). T. aceti is a
free-living nematode that is mostly researched in relation to aging
phenotypes, that are shared with other free-living nematodes
such as Caenorhabditis elegans (Reiss and Rothstein, 1975). It is
also used as live food in the larval stages of many fish species
(Brüggemann, 2012). It lacks proper genetic studies, making it
an interesting representative for the majority of nematode species
that are mostly studied morphologically.

Caenorhabditis elegans strain N2 was grown on nematode
growth medium (NGM) plates with E. coli OP50 for several days
using standard procedures (Brenner, 1974) and subsequently
harvested for DNA extraction.

DNA Extraction, PCR, and Sequencing
We extracted the DNA using the GeneJET Genomic DNA
Purification Kit (ThermoFisher Scientific Ltd., Paisley,
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United Kingdom) according to manufacturer’s instructions
for mammalian tissue and rodent tail genomic DNA purification
(protocol A), except that samples were lysed overnight (step
3) to ensure complete cuticle break down. DNA purity was
measured on a NanoDrop 2000 spectrophotometer (software:
NanoDrop2000, version 1.4.2; ThermoFisher Scientific Ltd.,
Paisley, United Kingdom).

We amplified an internal fragment of the 18S SSU rRNA gene
from our DNA samples, using the primers and thermocycler
protocol optimized by Floyd et al. (2005). This fragment is
∼900 bp in length and widely used for nematode species
identification. According to ONT’s instruction we adapted the
primers from Floyd et al. (2005) to include an adapter tail at the
5′ end (“MinION tail,” in lowercase), which is compatible with
the MinION workflows. This resulted in the following forward
primer: Nem_18S_F_MinION: 5′ tttctgttggtgctgatattgcCGCGAA
TRGCTCATTACAACAGC 3′ and reverse primer: Nem_18S_
R_MinION: 5′ acttgcctgtcgctctatcttcGGGCGGTATCTGATCGC
C 3′. A different primer pair, SSU18A and SSU26R (Floyd
et al., 2002), was initially tested with the MinION tails, but
resulted in no PCR amplification for these samples. Each 25-
µl PCR mix contained 2 µl purified DNA extract, 0.5 µl each
forward and reverse primers (10 µM; Sigma-Aldrich/Merck
Ltd., Poole, United Kingdom), 9.5 µl nuclease free water
(NFW; ThermoFisher Scientific Ltd., Paisley, United Kingdom),
and 2X GoTaq Hot Start Colorless Master Mix (Promega,
Southampton, United Kingdom). PCR was performed on a Bio-
Rad T100 Thermal Cycler (Bio-Rad Laboratories Ltd., Watford,
United Kingdom). The PCR protocol remained the same as Floyd
et al. (2005): initial denaturation for 5 min at 94◦C followed by 35
cycles of denaturation for 30 s at 94◦C, annealing for 30 s at 54◦C
and extension for 1 min at 72◦C, all followed by a final extension
for 10 min at 72◦C and cooling to 12◦C.

Successful amplification was confirmed using a 2% agarose gel
(Agarose I, Molecular Biology Grade; Thermo Fisher Scientific
Ltd., Paisley, United Kingdom) made with 1x TBE buffer
(Thermo Fisher Scientific Ltd., Paisley, United Kingdom), using
1 µl of NovelJuice nucleic acid stain (Sigma-Aldrich/Merck
Ltd., Poole, United Kingdom) loaded with each sample
and the size ladder. PCR products were purified using the
GeneJET PCR Purification Kit (Thermo Fisher Scientific Ltd.,
Paisley, United Kingdom) following manufacturer’s instruction
and eluted in 50 µl of Elution Buffer. DNA purity was
measured on a NanoDrop 2000 spectrophotometer (software:
NanoDrop2000, version 1.4.2; Thermo Fisher Scientific Ltd.,
Paisley, United Kingdom) and DNA concentration on a Qubit
1.0 (Thermo Fisher Scientific Ltd., Paisley, United Kingdom),
using the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific
Ltd., Paisley, United Kingdom). Both Nanodrop and Qubit
measurements were measured twice per sample to confirm
accuracy of the measurement.

We prepared the MinION library according to the 1D PCR
barcoding amplicons/cDNA (SQK-LSK109) protocol from ONT
(version PBAC12_9067_v109_revH_23MAY2018). This protocol
incorporates a second PCR to attach ONT barcodes to our first-
round PCR products as means of indexing, allowing multiple
samples to be run on one flow cell and subsequent demultiplexing

in the bioinformatics stage. Briefly, the PCR Barcoding Kit
(EXP-PBC001; ONT Ltd., Oxford, United Kingdom) was used to
prepare a 100-µl PCR mix containing 2 µl barcode (10 µM; ONT
Ltd., Oxford, United Kingdom), 48 µl first-round PCR product,
and 50 µl 2X LongAmp Taq Master Mix [New England BioLabs
(NEB) Inc., Hitchin, United Kingdom].

We tried to prepare the first-round PCR products in
equimolar concentrations for the barcoding PCR, but due to
large variations in DNA concentrations between the samples
we diluted the first-round PCR product of A. simplex and
P. redivivus to between 100 and 150 fmol and used all the
first-round PCR product for T. aceti. A. simplex received
barcode number 05, P. redivivus barcode 06 and T. aceti
barcode 07. PCR was performed on a Bio-Rad T100 Thermal
Cycler (Bio-Rad Laboratories Ltd., Watford, United Kingdom).
The PCR protocol for an amplicon length of ∼1,000 bp
(including primers) was as follows: initial denaturation 3 min
@ 95◦C; denaturation 15 s at 95◦C, annealing 15 s at 62◦C,
extension 50 s at 65◦C (all 15 cycles); final extension 50 s
at 65◦C; hold at 4◦C. The PCR products were cleaned up
with 1X Agencourt AMPure XP beads (Beckman Coulter Inc.,
Indianapolis, IN, United States). Finally, 1 µl per purified second-
round PCR product was quantified on the Qubit 1.0 (Thermo
Fisher Scientific Ltd., Paisley, United Kingdom) using the Qubit
dsDNA HS Assay Kit (Thermo Fisher Scientific Ltd., Paisley,
United Kingdom).

The concentration of A. simplex and P. redivivus DNA
was too high for Qubit quantification, so we prepared and
quantified a 1/5 dilution in NFW (Thermo Fisher Scientific
Ltd., Paisley, United Kingdom) that was taken forward. The
second-round PCR products were pooled in roughly equimolar
concentrations in 47 µl NFW (Thermo Fisher Scientific Ltd.,
Paisley, United Kingdom).

Library preparation continued using the reagents from
the Ligation Sequencing Kit (SQK-LSK109; ONT Ltd.,
Oxford, United Kingdom), according to manufacturer’s
instructions. Briefly, we prepared 325 ng pooled barcoded
library in 47 µl NFW (ThermoFisher Scientific Ltd., Paisley,
United Kingdom). Amplified product was end-repaired using
NEBNext Ultra II End-Repair/dA-tailing Module (NEB Inc.,
Hitchin, United Kingdom) for 5 min at 20◦C and 5 min at 65◦C,
after which it was cleaned up with 1X Agencourt AMPure XP
beads (Beckman Coulter Inc., Indianapolis, IN, United States).
Adapter ligation was performed using NEB Blunt/TA Ligation
Master Mix (NEB Inc., Hitchin, United Kingdom) and reagents
provided in the SQK-LSK109 kit. Ligation took place for 10 min
at room temperature. DNA was eluted in 15 µl Elution Buffer
after being purified with 0.4X AMPure XP beads and washed
with the Short Fragment Buffer provided in the SQK-LSK109
kit. 1 µl of prepared library was quantified on the Qubit 1.0
(Thermo Fisher Scientific Ltd., Paisley, United Kingdom) using
the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific Ltd.,
Paisley, United Kingdom) and gave a measure of 6.36 ng/µl,
which equates to a molarity of 102.9 fmol.

The protocol from ONT recommends loading 5-50 fmol
of amplicon product onto the flow cell, so we diluted 5.44
µl of prepared library in 6.56 µl Elution Buffer to load 40
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fmol of library onto the flow cell. The flow cell was primed
for loading by flushing the flow cell with 1 ml priming mix
(30 µl of Flush Tether in one tube of Flush Buffer), taking
care to avoid the introduction of air bubbles. The library was
prepared for loading by mixing 37.5 µl Sequencing Buffer, 25.5
µl Loading Beads and 12 µl diluted DNA library, after which
the sample was added to a flow cell, type R9.5.1, through
the SpotON sample port. Total library preparation time was
estimated to be∼3 h.

We performed the sequencing run using MinKNOW (version
3.4.5; ONT Ltd., Oxford, United Kingdom) on the MinIT
(a small powerful computing unit that eliminates the need
for a dedicated laptop; ONT Ltd., Oxford, United Kingdom),
indicating the flow cell type and experimental kit used. As a
metric of flow cell quality the MinKNOW software assesses
flow cell active pore count, in the multiplexer (MUX) scan
before each run. Higher active pore counts represent a high
flow cell quality, with a maximum of 2,048 and a guaranteed
level of 800. Our flow cell had 1,097 pores available for
sequencing. The flow cell generated 116,620 reads in 10 min
of sequencing, after which the run was stopped. The flow cell
was subsequently washed using the Wash Kit (EXP-WSH002;
ONT Ltd., Oxford, United Kingdom) with 150 µl Solution
A, followed by 500 µl of Storage Solution, and stored in the
fridge for re-use.

Portable DNA Extraction, PCR and
Sequencing
In preparation for field work we tested whether the developed
MinION procedure could also be performed on a fully portable
system. We prepared the model organism C. elegans for MinION
sequencing using a portable molecular lab, the Bentolab Pro3

(Nature Biotechnology, 2016; Bento Bioworks Ltd., London,
United Kingdom) and a multi tool (CMFTLi 10.8V Li-Ion
Cordless Multifunction Tool, Clarke International Ltd., Epping,
United Kingdom) as a low-cost handheld vortex. Most of the
procedures are similar to above, but working on the Bentolab
required some essential adaptations to protocols.

We extracted the DNA using the GeneJET Genomic
DNA Purification Kit (ThermoFisher Scientific Ltd., Paisley,
United Kingdom) according to manufacturer’s instructions for
mammalian tissue and rodent tail genomic DNA purification
(protocol A). Adaptations to the procedure to make this protocol
work on the Bentolab were as follows: In step 3, the sample
was divided over two 0.2 ml PCR tubes and briefly spun down
using the Bentolab’s centrifuge (Bento Bioworks Ltd., London,
United Kingdom). Subsequently, the two PCR tubes were
incubated for 18 h at 56◦C, using the Bentolab’s thermocycler
(Bento Bioworks Ltd., London, United Kingdom) as a heating
block. The thermocycler protocol performed 18 cycles of 1 h
at 56◦C. In step 4, the lysate was then transferred to a 1.5 ml
centrifuge, 20 µl RNase A was added and vortexed on the multi
tool4. Vortexing on a multi tool can be achieved by attaching the

3https://www.bento.bio
4Inspired by Holly Ganz’ use of a multi tool for bead beating: https://youtu.be/
Q7PM1xoMjiU.

“straight saw blade” to the multi tool. This blade provides enough
space for up to four centrifuge tubes at the same time. As a safety
measure the sharp end of the saw blade was covered with duck
tape. Then the centrifuge tube was added to the blade with duck
tape, ensuring a tight fit. The multi tool was turned on at the
highest speed (21,000 strokes/minute), creating a similar effect as
a lab vortex. The vortexing in step 5 and 6 was also performed
using the multi tool. In step 7, the 2 ml collection tube of the
GeneJet purification column was replaced by a 1.5 ml centrifuge
tube with the cap cut off. The Bentolab’s centrifuge can only
handle 1.5 ml tubes; use of 2 ml collection/centrifuge tubes will
lead to small plastic particles that can lead to reduced efficiency
of the centrifuge lock system. Because of the reduced volume of
the collection tube, the lysate was added to the prepared column
at a maximum of 350 µl at a time, after which the sample was
centrifuged for 1 min at 6,000× g and the flowthrough discarded
(with a total of three repeats necessary to complete step 7). In step
8, 250 µl Wash Buffer I was added at a time and centrifuged for
1 min at 8,000 × g and the flowthrough discarded (with a total
of two repeats necessary to complete step 8). In step 9, 250 µl
Wash Buffer II was added at a time and centrifuged for 4 min
at 8,000 × g and the flowthrough discarded (with a total of two
repeats necessary to complete step 9, and increased centrifuge
time to compensate for the max 8,000 × g force of the Bentolab’s
centrifuge). An additional dry spin of 1 min at 8,000 × g was
performed, after which the collection tube was discarded and
replaced by a sterile 1.5 ml centrifuge tube. In step 10, 50 µl of
Elution Buffer was added to the purification column.

PCR was prepared as described above, but this time performed
using the Bentolab’s thermocycler (Bento Bioworks Ltd., London,
United Kingdom). Also, aluminum foil was used as a sterile
work environment as an alternative for a PCR hood. Aluminum
foil was taped to the bench space using masking tape. Bleach
(1:10 ratio dilution in water) was sprayed on the surface, letting
it sit for 3 min, and wiping the surface with clean paper tissue.
This process was repeated twice to decontaminate, after which
70% ethanol was used to remove any residual bleach. The
Nem_18S_F/R_MinION primers did not work for C. elegans, so
the primers from Floyd et al. (2002) were used with MinION
tails (in lowercase). The forward primer: SSU18A_MinION:
5′ tttctgttggtgctgatattgcAAAGATTAAGCCATGCATG 3′ and
reverse primer: SSU26R_MinION: 5′ acttgcctgtcgctctatcttcCAT
TCTTGGCAAATGCTTTCG 3′. Each 25-µl PCR mix
contained 2 µl purified DNA extract, 0.5 µl each forward
and reverse primers (10 µM; Sigma-Aldrich/Merck Ltd., Poole,
United Kingdom), 9.5 µl nuclease free water (NFW; Thermo
Fisher Scientific Ltd., Paisley, United Kingdom), and 2X GoTaq
Hot Start Colorless Master Mix (Promega, Southampton,
United Kingdom). PCR was performed on the Bentolab (Bento
Bioworks Ltd., London, United Kingdom). The PCR protocol
was adapted from Floyd et al. (2002): initial denaturation 5 min
at 94◦C; denaturation 1 min at 94◦C, annealing 1.5 min at 60◦C,
extension 2 min at 72◦C (all 35 cycles); final extension 10 min at
72◦C; hold at 12◦C.

Successful amplification was confirmed using a 2% agarose gel
(Agarose I, Molecular Biology Grade; Thermo Fisher Scientific
Ltd., Paisley, United Kingdom) made with 1x TBE buffer
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(Thermo Fisher Scientific Ltd., Paisley, United Kingdom). For
the Bentolab’s small gel chamber (Bento Bioworks Ltd., London,
United Kingdom) we used 27.5 ml of 1X TBE buffer with
0.5 g agarose. The need for a scale was eliminated by using an
Eppendorf tube marked with the needed volume corresponding
to 0.5 g agarose. Agarose was melted into the TBE buffer using
a traditional coffee pot, which has a typical conical shape, on the
hob. We have also found this method to work on a camping stove.
The gel was then poured into the chamber and left to set for∼15
min. The comb and shutters were removed and we added 45 ml
1x TBE buffer for the gel electrophoresis run, 60 min at 60V. We
again used 1 µl NovelJuice (Sigma-Aldrich/Merck Ltd., Poole,
United Kingdom) for the size ladder and per sample for DNA
staining, as this DNA stain is safer to work with than traditional
ethidium bromide and works both with UV transilluminators
and with the blue LED transilluminator of the Bentolab (Bento
Bioworks Ltd., London, United Kingdom).

The PCR product was cleaned up using GeneJET PCR
Purification Kit (Thermo Fisher Scientific Ltd., Paisley,
United Kingdom) following manufacturer’s instruction for
DNA purification using centrifuge (protocol A). Adaptations
to the procedure to make this protocol work on the Bentolab
were as follows: In step 3, the 2 ml collection tube of the GeneJet
purification column was replaced by a 1.5 ml centrifuge tube with
the cap cut off (see adaptations to DNA purification protocol for
explanation). The solution of step 1 was added to the purification
column, centrifuged for 1 min at 8,000 × g and the flowthrough
discarded. In step 4, 350 µl Wash Buffer was added at a time
and centrifuged for 1 min at 8,000 × g and the flowthrough
discarded (with a total of two repeats necessary to complete step
4). In step 5, a dry spin of 1.5 min at 8,000× g was performed. In
step 6, the collection tube was discarded and replaced by a clean
1.5 ml centrifuge tube. 50 µl of Elution Buffer was added to the
purification column and centrifuged for 1 min at 8,000× g.

We prepared the MinION library according to the 1D PCR
barcoding amplicons/cDNA (SQK-LSK109) protocol from
ONT (version PBAC12_9067_v109_revH_23MAY2018). As
mentioned above, this protocol incorporates a second PCR
to attach ONT barcodes to our first-round PCR products as
means of indexing. This not only allows multiple samples to be
run on one flow cell, but also allows for demultiplexing in the
bioinformatics stage when a flow cell is reused. Washing a flow
cell after a run might leave some remnant DNA from previous
runs. Therefore, the ONT barcodes help to identify the current
sample in the bioinformatics stage. Briefly, the PCR Barcoding
Kit (EXP-PBC001; ONT Ltd., Oxford, United Kingdom) was
used to prepare a 100-µl PCR mix containing 2 µl barcode
(10 µM; ONT Ltd., Oxford, United Kingdom), 2 µl first-
round PCR product, 46 µl NFW (ThermoFisher Scientific
Ltd., Paisley, United Kingdom) and 50 µl 2X LongAmp Taq
Master Mix [New England BioLabs (NEB) Inc., Hitchin,
United Kingdom]. C. elegans received barcode number 10.
PCR was performed on the Bentolab thermocycler (Bento
Bioworks Ltd., London, United Kingdom). The barcoding PCR
protocol was slightly adjusted to accommodate the Bentolab’s
inability for setting cycles of 15 s and minimum thermocycler
temperature of 10◦C: initial denaturation 3 min @ 95◦C;

denaturation 20 s at 95◦C, annealing 20 s at 62◦C, extension 60
s at 65◦C (all 12 cycles); final extension 50 s at 65◦C; hold at
10◦C. The PCR products were cleaned up with 1X Agencourt
AMPure XP beads (Beckman Coulter Inc., Indianapolis, IN,
United States) on a 3D-printed magnetic BOMB microtube rack5

(Oberacker et al., 2019).
Library preparation continued using the reagents from the

Ligation Sequencing Kit (SQK-LSK109; ONT Ltd., Oxford,
United Kingdom), according to manufacturer’s instructions.
Since we wouldn’t have an accurate way of quantifying DNA
in the field we based the used volume of DNA on a previous
MinION run (Knot, unpublished data), to prepare 33 µl barcoded
library in 47 µl NFW (Thermo Fisher Scientific Ltd., Paisley,
United Kingdom). Amplified product was end-repaired using
NEBNext Ultra II End-Repair/dA-tailing Module (NEB Inc.,
Hitchin, United Kingdom) for 5 min at 20◦C and 5 min at 65◦C
on the Bentolab thermocycler (Bento Bioworks Ltd., London,
United Kingdom). The end-repaired library was cleaned up
with 1X Agencourt AMPure XP beads (Beckman Coulter Inc.,
Indianapolis, IN, United States) on a 3D-printed magnetic BOMB
microtube rack (Oberacker et al., 2019). Adapter ligation was
performed using NEB Blunt/TA Ligation Master Mix (NEB Inc.,
Hitchin, United Kingdom) and reagents provided in the SQK-
LSK109 kit. Ligation took place for 10 min at room temperature.
DNA was eluted in 15 µl Elution Buffer after being purified with
0.4X AMPure XP beads and washed with the Short Fragment
Buffer provided in the SQK-LSK109 kit.

The flow cell was primed for loading by flushing the flow
cell with 1 ml priming mix (30 µl of Flush Tether in one tube
of Flush Buffer), taking care to avoid the introduction of air
bubbles. The library was prepared for loading by mixing 37.5 µl
Sequencing Buffer, 25.5 µl Loading Beads and 12 µl DNA library,
after which the sample was added to a flow cell, type R9.5.1,
through the SpotON sample port. Total library preparation time
was estimated to be∼4.5 h.

We performed the sequencing run using MinKNOW (version
3.4.5; ONT Ltd., Oxford, United Kingdom) on the MinIT (a small
powerful computing unit that eliminates the need for a dedicated
laptop; ONT Ltd., Oxford, United Kingdom), indicating the flow
cell type and experimental kit used. To test whether old flow
cells can still be useful for sequencing small barcoded amplicon
libraries, we used a flow cell that was used twice before, once in
a 24 h run and once in a 2.5 h run. When reusing a flow cell the
starting voltage has to be adjusted and we adjusted this to -225 V,
equivalent to ONT’s recommendation after ∼26 h previous run
time. As mentioned above, higher active pore counts represent a
high flow cell quality, with a maximum of 2,048 and a guaranteed
level of 800 for new flow cells. The MUX scan indicated our
flow cell had 43 pores available for sequencing. The flow cell
generated 2,632 reads in 14 min of sequencing, after which the
run was stopped.

Sanger Sequencing
Each of the samples used for the MinION sequencing was
also sent for Sanger sequencing (GATC/Eurofins Genomics).

5https://bomb.bio/protocols/
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Both forward and reverse strands were sequenced using
the amplification primers as sequencing primers. Sanger
sequence electropherograms were visually inspected and edited
using 4Peaks version 1.8 (Nucleobytes B.V., Aalsmeer, the
Netherlands). Edited forward strand and reverse complemented
reverse strand sequences were aligned using Seaview version
4.7 (Gouy et al., 2010). Nucleotide mismatches were checked
in the original electropherogram and resolved. A consensus
sequence was derived for each sample and primer sequences
trimmed from each end of it. The resulting sequences were 885 bp
(A. simplex), 887 bp (P. redivivus), 832 bp (T. aceti), and 844 bp
(C. elegans) long.

Bioinformatic Analyses
The raw fast5 MinION reads were basecalled and demultiplexed
using Guppy version 3.2.4 + d9ed22f (ONT Ltd., Oxford,
United Kingdom) to produce fastq files for each sample.
Reads were classified as pass/fail based on a minimum quality
score of 7. The fastq files were merged into one per sample
and explored using Nanoplot (version 1.28.06), creating plots
displaying log transformed read length (“–loglength”). Barcode
and primer trimming was performed using Porechop (version
0.2.47). A second round of demultiplexing requiring barcodes at
both ends of the reads (“–require_two_barcodes”) was performed
using Porechop. Subsequently, the MinION reads were processed
using the default settings of the ONTrack pipeline (version
1.4.28; Maestri et al., 2019). Briefly, Seqtk seq9 was used to
create fasta files complementary to the fastq files. Reads were
clustered using VSEARCH (Rognes et al., 2016), after which
the reads in the most abundant cluster were retained. Then
200 randomly sampled reads were used to produce a draft
consensus sequence using Seqtk sample and aligned using
MAFFT (Katoh et al., 2002). EMBOSS cons10 was then used to
retrieve a draft consensus sequence starting from the MAFFT
alignment. Another 200 randomly sampled reads using Seqtk
sample, different from the first iteration, were mapped to the
draft consensus sequence using Minimap2 (Li, 2018) to polish
the obtained consensus sequence. Samtools was used to filter
and sort the alignment file and compress it to the bam format
(Li et al., 2009). Nanopolish index and nanopolish variants –
consensus modules from Nanopolish11 were used to obtain
a polished consensus sequence. The ONTrack pipeline was
run with three iterations, the standard value of the pipeline.
This resulted in three polished consensus sequences which
were aligned with MAFFT to select the consensus sequence
that was produced in the majority of times. All scripts of
the pipeline were run within a virtual machine (as part of
the ONTrack pipeline), emulating an Ubuntu v18.04.2 LTS
operating system, on a Mac laptop without using any internet
connection. All the code used for the bioinformatic analyses

6https://github.com/wdecoster/NanoPlot
7https://github.com/rrwick/Porechop
8https://github.com/MaestSi/ONTrack
9https://github.com/lh3/seqtk
10http://emboss.open-bio.org/rel/dev/apps/cons.html
11https://github.com/jts/nanopolish

and additional files necessary to replicate the analyses can be
found on https://github.com/ieknot/MinION-DNA-barcoding-
of-nematodes. MinION fastq and Sanger fasta accession numbers
are reported in the results.

To assess sequence accuracy, MinION raw reads and
consensus reads were aligned to the corresponding Sanger-
derived reference sequence using BLASTn (Altschul et al., 1990),
with no sequence complexity masking (“-dust no-soft_masking
false”). The consensus sequences were aligned to the
corresponding Sanger sequence using the MUSCLE algorithm
(Edgar, 2004) in Seaview version 4.7 (Gouy et al., 2010).

RESULTS

Sequencing Run Quality and Yield
The first and multiplexed flow cell had 1,097 pores available for
sequencing. The flow cell generated 116,620 reads containing
6,033 Mb in 10 min of sequencing, after which the run
was stopped. During basecalling 71.9% of these reads passed
the minimum quality threshold. The basecalled reads were
demultiplexed, producing 42,304 reads for analysis (Table 1).
The mean read length was 1,015 bp for A. simplex, 1,011 bp for
P. redivivus and 504 bp for T. aceti.

The second flow cell, used for the library prepared with a
fully portable setup, had 43 pores available for sequencing. The
flow cell generated 2,632 reads containing 1.94 Mb in 14 min of
sequencing, after which the run was stopped. During basecalling
48.9% of these reads passed the minimum quality threshold.
The basecalled reads were demultiplexed, producing 205 reads
for analysis (Table 1). The mean read length was 833 bp for
C. elegans.

To assess the usefulness of the sequence data for taxonomic
identification of the samples, the raw reads for each sample
were compared to the (Sanger) reference sequences using
BLASTn. The distributions of percentage sequence identities for
all pairwise read-reference comparisons are shown in Figure 1.
The median percent identity was 88.5% for A. simplex, 87.7% for
P. redivivus, 89.5% for T. aceti and 82.3% forC. elegans, indicating

TABLE 1 | Summary of number of reads per sample in subsequent
bioinformatics steps.

MinION
run

Species Sample Demultiplexed
reads

Trimmed
reads (%)

Reads
used for

consensus

1 A. simplex BC05 8,059 3,294
(40.9%)

200

1 P. redivivus BC06 13,802 5,515
(40.0%)

200

1 T. aceti BC07 20,443 2,955
(14.5%)

200

2 C. elegans BC10 483 205
(42.4%)

65

Trimmed reads are also represented as percentage of demultiplexed reads. For C.
elegans the largest VSEARCH cluster contained only 65 reads, so the consensus
sequence was generated with this amount of reads (see main text for explanation
of the ONTrack bioinformatics pipeline).
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FIGURE 1 | Distribution of percentage sequence identity between raw reads
and the (Sanger) reference sequence (A) A. simplex, (B) P. redivivus,
(C) T. aceti, and (D) C. elegans. (A–C) were run on a new MinION flow cell,
whereas (D) was run on a flow cell that had been used twice before (for a total
of 26.5 h, see main text for more details). The median percent identity
(indicated by a vertical dotted line) is 88.5% for A. simplex, 87.7% for
P. redivivus, 89.5% for T. aceti and 82.3% for C. elegans. Bioinformatic
analyses using the ONTrack pipeline generated a consensus sequence for
every sample that had a 99.9% (A,B), 100% (C), and 95.6% (D) accuracy
compared to their Sanger reads (indicated by a vertical red line).

a ∼11% error rate in sequencing for the first run and a ∼18%
error rate in the second run (Figure 1).

Bioinformatics Analyses
The second demultiplexing round in Porechop, which included
the trimming step to remove primers and ONT barcodes,

produced the following number of reads per sample to
be taken forward in the ONTrack bioinformatics pipeline
(Maestri et al., 2019): 3,294 reads for A. simplex, 5,515
reads for P. redivivus, 2,955 reads for T. aceti and 205 for
C. elegans (Table 1). These reads were used in the VSEARCH
clustering step of the ONTrack pipeline, where contaminating
sequences were removed by only taking the largest cluster
of reads forward. T. aceti raw data showed an unexpected
short mean read length of 504 bp. The clustering step in
the ONTrack pipeline removed contaminating sequences, after
which the mean read length of T. aceti improved to 773 bp.
From these clusters 200 reads were subsampled per sample
for consensus sequence generation. However, for C. elegans
the largest VSEARCH cluster contained only 65 reads, so
the consensus sequence was generated with this amount of
reads (Table 1).

The default setting of the ONTrack pipeline is to run
three iterations of the pipeline, generating three consensus
sequences per sample. Subsequently, it aligns the consensus
sequences generated during each round and selects the
final consensus sequence based on the majority rule. Two
species, A. simplex and P. redivivus, generated three consensus
sequences which were all different. Since they all had the
same statistical probability of being correct, the first consensus
sequence was randomly selected. T. aceti had a consensus
sequence supported by two iterations, and the C. elegans
consensus sequence was supported by all three iterations
of the pipeline.

Median percent identity between consensus sequences and
the reference sequence was significantly improved in all cases
(Figure 1). For A. simplex and P. redivivus the accuracy improved
to 99.9%, for T. aceti to 100% and for C. elegans to 95.6%
(Figure 2). Compared to the raw MinION sequences this is
an improvement of 11.4, 12.2, 10.5, and 13.3%, respectively.
The MinION datasets generated for this study can be found in
the European Nucleotide Archive (ENA) under the project ID
PRJEB37489 (samples ERS4397495, ERS4397496, ERS4397497,
and ERS4397498). MinION consensus sequences are available in
the Supplementary Material.

Sanger sequence read lengths were 885 bp for A. simplex,
887 bp for P. redivivus, 832 bp for T. aceti and 844 bp for
C. elegans. The Sanger reads of all samples matched 100%
to a sequence of the correct species on NCBI (Figure 2).
Sanger consensus sequences are available at GenBank under
the accession numbers MT246663, MT246664, MT246665,
and MT246666.

DISCUSSION

We successfully genetically identified four nematode species
using 18S SSU rRNA barcoding on the MinION. We also
proved that this can be accomplished using a fully portable
molecular lab. This was possible by successfully adapting 18S
SSU rRNA primers (Floyd et al., 2002, Floyd et al., 2005) with
MinION tails. The read lengths of both samples fall within the
expected range. Our first run yielded three successful species
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FIGURE 2 | Species investigated and nucleotide alignments of MinION and Sanger sequences comparing consensus accuracy for (A) A. simplex, (B) P. redivivus,
(C) T. aceti, and (D) C. elegans. Sanger sequences have a 100% accuracy. Accuracy shown is the accuracy of the MinION consensus reads. Comparison against
accession numbers MF072711.1 (A. simplex), AF083007.1 (P. redivivus), AF202165.2 (T. aceti), and MN519140.1 (C. elegans). The scale bar in the photographs of
(A–C) represents 1 mm and in (D) represents 0.5 mm.
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identifications from MinION reads that have an accuracy of
99.9–100%, when compared to their respective Sanger reads.
Our second run yielded a successful species identification
from the MinION consensus read that has an accuracy of
95.6%, when compared to Sanger sequencing. The Sanger reads
of all samples matched 100% to a sequence of the correct
species on NCBI.

The C. elegans data gives a considerably lower accuracy of
its MinION consensus sequence than the three other species.
We are confident that this is unrelated to the preparation of
the sample on a portable setup, as we have applied this setup
in a field situation and got MinION consensus sequences that
matched closer to the correct species on NCBI (Knot et al.,
unpublished data). The C. elegans run was set up to test the
portable setup before bringing all the equipment out to the field.
As such, the primary objective was to prove that everything
worked, with data quality being a lower priority. Hence, when
the library was loaded and the MinION flow cell MUX scan
indicated only 43 working pores, we continued the experiment
nonetheless. The MinION generated data for 15 min, after which
no active pores remained and the run was stopped. The flow
cell that was used twice before, once in a 24 h run and once in
a 2.5 h run, multiplexing nine samples in two runs, generating
1,950,657 reads containing 2.11 Gb in total. We therefore feel that
the limited accuracy in the C. elegans run has more to do with the
limited lifespan of a flow cell, than with the sample preparation
or the portable sample preparation. We used the EXP-WSH002
wash kit from ONT, which has now been succeeded by the EXP-
WSH003 kit. This latest kit incorporates a nuclease to digest
and remove nucleic acid that has been loaded onto a flow
cell previously and has proven to be much more efficient in
maintaining flow cell quality after a wash than the previous wash
kit12. We therefore do not expect future MinION flow cells to
deteriorate as much after using the wash kit as was the case for
our C. elegans run.

Tackling a large phylum like Nematoda presents challenges
that other phyla might be less affected by Kumar et al. (2012).
For example, we started exploring the primers developed by
Floyd et al. (2005), because these primers are optimized for
a wide phylogenetic range of nematodes. However, addition
of the MinION tails seems to alter the efficiency of these
primers. The tailed primers amplified A. simplex, P. redivivus
and T. aceti successfully, but the addition of MinION tails
prohibited the primers to amplify C. elegans successfully.
We then switched to a primer optimized specifically for soil
nematodes (Floyd et al., 2002), and found that this primer
with MinION tails amplified C. elegans without problems.
Future work will benefit from testing a wider array of
nematode primers.

The potential throughput of a MinION R9 chemistry flow cell
is∼20 Gb (Krehenwinkel et al., 2019b), and has been shown to be
sufficient to generate new draft genomes of nematodes through
shotgun sequencing (Eccles et al., 2018; Fauver et al., 2019).
Future barcoding work could focus on maximizing the utility of
each flow cell by multiplexing samples in one run or harvesting

12https://store.nanoporetech.com/flow-cell-wash-kit-r9.html

the long-read potential unique to TGS platforms like PacBio
and ONT. For example, Srivathsan et al. (2019) have developed
an improved low-cost MinION pipeline where they multiplexed
3,500 samples per flow cell. However, preparing so many samples
for sequencing requires significant labor time (Krehenwinkel
et al., 2019b; Piper et al., 2019; Srivathsan et al., 2019). Heeger
et al. (2018) used PacBio circular consensus sequencing to show
the feasibility of long-read metabarcoding of environmental
samples using a∼4,500 bp ribosomal DNA marker that included
most of the eukaryote SSU and LSU rRNA genes and the complete
ITS region. Krehenwinkel et al. (2019a,b) showed that long-
read barcoding using the MinION of a similar ribosomal DNA
region, spanning∼4,000 bp, has great potential for in situ species
identification too, although degraded DNA can be a limiting
factor in generating long-read barcodes. Small scale projects
that do not require such high throughput could alternatively
focus on using the newly released Flongle flow cell instead of a
traditional MinION flow cell, at a cost of $90 instead of $475-$900
(depending on number of flow cells purchased), respectively.
The membrane in this flow cell contains less nanopores to
generate a throughput of 1–2 Gb, to accommodate projects
with lower throughput demands (Krehenwinkel et al., 2019b).
There is a trade-off between flexibility, where a project can
sequence samples whenever they want, and cost-effectiveness,
where a project can sequence as many samples as possible
to get the lowest possible costs per sample. The latter is
highly unlikely to be necessary and achievable in very remote
regions, given the previously mentioned time restrictions this
places on projects.

CONCLUSION

The use of the MinION opens up exciting possibilities for next-
generation biomonitoring. The high efficiency of the MinION
consensi compared to the Sanger sequences shows that the
MinION can be used to identify diverse nematode species.
Extrapolating our results to potential application in a field
setting, our results suggest that barcoding with the MinION can
generate enough reads for reliable identification within 15 min,
assuming good DNA quality and depending on the number of
samples that are multiplexed. Our study shows the potential for
barcoding eukaryotes and can aid biomonitoring of invertebrate
species. Optimizing portable sequencing methods for nematode
identification is the first step to sequencing nematode species
in the field. One of the challenges ahead for TGS of nematode
species lies in the identification of nematodes species from mixed
samples from complex natural environments like soil, marine
sediments or feces. This challenge could be overcome in several
ways. Improvements in the underlying MinION technologies
is crucial and will improve accuracy and decrease error rates,
just as previous improvements have already shown (Eisenstein,
2019). Further optimization of the bioinformatics analyses is also
of high importance. Improved algorithms will lead to higher
accuracy in species identification. These improvements will
open up possibilities like near real-time genetic identification of
nematodes from e.g., soil or feces, which would allow for analyses
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of soil nematodes as indicator of soil environment disturbance or
rapid parasite identification.
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Environmental DNA (eDNA) is becoming a standard tool in environmental monitoring

that aims to quantify spatiotemporal variation for the measurement and prediction of

ecosystem change. eDNA surveys have complex workflows encompassing multiple

decision-making steps in which uncertainties can accumulate due to field sampling

design, molecular biology lab work, and bioinformatics analyses. We conducted a

quantitative review of studies published prior to December 2017 (n = 431) that had

sampled eDNA from a variety of ecosystems and that had explicitly accounted for

variability and uncertainty associated with eDNA workflows, either in their study design

(e.g., replication) or data analysis (e.g., statistically modeling the spatiotemporal variation).

We recorded differences among research studies in their spatial and temporal study

design, the detected scales of natural variation in the study taxa, and how researchers

measured and addressed the multiple sources of variability and uncertainty associated

with the eDNA workflow. We show that relatively few studies used eDNA to understand

temporal variation in biodiversity compared to spatial variation, and fewer described

how uncertainties were addressed. We recommend increasing the number of temporal

studies and to account for both natural variation and sources of uncertainty, such

as imperfect detection, when undertaking eDNA surveys. Of studies that quantified

spatiotemporal variation, this review identified gaps in the scales over which researchers

have observed these patterns. Increasing the number of long-term and broad-scale

eDNA studies will improve understanding of how useful eDNA is at scales relevant for

monitoring the effects of environmental changes such as climatic shifts or land use

change. Even where sources of spatiotemporal variation and uncertainty were accounted

for, the effort in quantifying this variation differed among the different steps in the eDNA

process, from field, to laboratory and bioinformatics procedures, depending on the type

of community studied (micro- vs. macro-organism communities). We recommend more

consistent experimental and modeling methods, accounting for spatiotemporal variation,

and uncertainty in eDNA collection, and analysis, and incorporation of prior knowledge

of sources of variability via Bayesian modeling approaches to account for uncertainties

such as imperfect detection, to generate robust diversity estimates and increase the

comparability of eDNA datasets for environmental monitoring across space and time.

Keywords: bioinformatics, community, eDNA, experimental design, single taxon, spatiotemporal scale,

uncertainty, variability
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INTRODUCTION

Understanding spatial and temporal community patterns and
processes is fundamental for disentangling the processes
underpinning current and past biodiversity (Levin, 1992;
Eme et al., 2015), and for predicting future biodiversity
patterns (Sandel and Smith, 2009); it is thus fundamental
for conservation and environmental management (Levin,
1992). However, because organisms respond differently to
processes operating at a variety of spatial and temporal scales,
quantifying spatiotemporal patterns and making generalizations
about the causal processes remains challenging (Levin, 1992).
Our ability to fully and accurately estimate sources of
uncertainty in biodiversity measurements is key to advancing
our understanding of these spatiotemporal scales of variation.
Sources of variation in spatiotemporal data may be due to
natural variation in biodiversity through space and time, but
may also be due to errors introduced during field sampling
and other steps in the biodiversity estimation process (Chen
et al., 2013). The advent of new molecular tools, accessible
at an increasingly reasonable price, has facilitated the use of
environmental DNA (eDNA) to quantify biodiversity patterns
(Chave, 2013). This has been especially useful for improving
our understanding of spatiotemporal variation in environmental
microbial communities (Shade et al., 2018) since prior methods
to classify taxa based on traits such as morphology, frequently
group taxa that are unrelated by descent (Kysela et al.,
2016). For molecular biodiversity assessments, taxa are instead
normally identified by the analysis of short, but taxonomically
informative, DNA regions (Taberlet et al., 2018). In comparison
to traditional approaches in community ecology, DNA surveys
can allow detection of multiple taxa, including cryptic species,
simultaneously. Environmental DNA (or eDNA) that is excreted
or shed from live and dead organisms can be extracted from
environmental samples (such as soil, water, air, and feces) without
the need to isolate or even sight a specific taxon (Taberlet et al.,
2012) with the potential to improve detection of nocturnal,
rare and transient species, as well as species dwelling in less
visible habitats, such as underground. Consequently, eDNA
methods can be less environmentally damaging (Rees et al., 2014)
and more accurate than field sampling (Janosik and Johnston,
2015). Particularly following the development of next-generation
sequencing, eDNA methods can also be cheaper than some
traditional methods and are thus they are increasingly considered
as viable for the monitoring of bothmicro- andmacro-organisms
(Holdaway et al., 2017; Taberlet et al., 2018). While eDNA
methods have been applied to study microbial communities for
over two decades (Ranjard et al., 2000) leading to well established
methods and a wide range of studies, molecular research to
investigate macro-organisms is still in its infancy, with ongoing
method development and optimisation.

Despite growing enthusiasm among the scientific community
for biodiversity analysis using eDNA methods, species
detection from eDNA studies is imperfect (Schmidt et al.,
2013). Environmental DNA surveys have complex workflows
encompassing multiple decision-making steps over which errors
can accumulate (Table 1). Detection errors can occur due to:

(1) the incorrect detection of target taxa when they are absent
(false positives) and (2) failing to detect the target taxa when
they are present (false negatives; Darling and Mahon, 2011).
These detection problems can be attributed to either method or
process errors. DNA-based method errors include all the errors
resulting from the multiple steps used in performing the eDNA
survey protocol (Zinger et al., 2019). This encompasses field
sampling, laboratory sample processing and bioinformatics steps.
DNA-based process errors comprise all the errors due to natural
variability in species’ DNA concentration in space and time
(Darling and Mahon, 2011). For instance, a site with a higher
concentration of DNA for the species α at time t should have
a higher probability of detection than another site, or than the
same site at time t + 1 if the DNA concentration decreases over
time. Consequently, the design and use of appropriate eDNA
surveys are highly context-dependent and so the development
of a standard protocol that can account for these uncertainties
(i.e., that measures the error due to the study design) for all
taxa and all conditions is challenging (Taberlet et al., 2018).
Nevertheless, some recommendations for reducing errors and
increasing research reproducibility have been made (Dickie et al.,
2018; Zinger et al., 2019). Improvement in our understanding
of how these sources of error vary over time and space is
necessary to avoid poor estimates of diversity (Carini et al.,
2017) and to correctly interpret ecosystem functioning. If not
properly accounted for, these sources of uncertainty can bias our
understanding of biodiversity patterns and potentially misinform
critical management and conservation decisions (Darling and
Mahon, 2011; Chen et al., 2013; Furlan et al., 2016). For example,
in invasive species surveillance and monitoring, the risk of false
positives is a significant concern for managers and stakeholders
who are concerned with minimizing both expenditure and any
inconvenience caused by having to implement unnecessary pest
control actions (Darling and Mahon, 2011).

In this systematic review, we conduct a gap analysis of
the literature to quantify scales of natural spatiotemporal
variation detected by eDNA studies and identify the uncertainties
introduced by field sampling design, laboratory choices and
bioinformatics procedures that may impact the accuracy and
reproducibility of present-day diversity assessments conducted
using eDNA. We reviewed empirical research that used eDNA
sampled from natural environments to assess (1) the disparity
among these studies due to differences in their spatial and
temporal scales of observation and (2) if, and how, researchers
have measured and addressed the multiple sources of uncertainty
associated with eDNA sampling, laboratory processing and
bioinformatics. Our approach was to follow a quantitative review
methodology (Pickering and Byrne, 2014) to detect trends and
gaps in how uncertainty and variability are detected and dealt
with in eDNA studies. Our review methods were designed
to capture the variety of research methods that have been
employed in eDNA studies (i) on macro-organisms (length
body ≥ 500µm) and micro-organisms (length body < 500µm)
(Martiny et al., 2006), (ii) across levels of organization, from
a single taxon to multi-taxon communities, and (iii) across
ecosystems, from above- and below-ground terrestrial systems,
to both freshwater and marine aquatic ecosystems. Our aim

Frontiers in Ecology and Evolution | www.frontiersin.org 2 May 2020 | Volume 8 | Article 135126

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Mathieu et al. Variability and Uncertainty From eDNA

TABLE 1 | Steps and decisions required as part of a typical eDNA workflow, and the potential biases or uncertainties introduced at each of these steps.

Decisions required at each step of the

eDNA workflow

Uncertainty or biases introduced Relevant references

Sample collection

Number of samples to collect

Volume of samples to collect

Spatial distribution of samples

Temporal distribution of samples

False negative detection of taxa due to:

• Insufficient number or volume of samples to capture the true

diversity

• Spatial or temporal design insufficient to capture true diversity

False positive detection of taxa due to:

• Cross contamination between samples during collection

Cantera et al., 2019

Davis A. J. et al., 2018

Dickie et al., 2018

Goldberg et al., 2016

Zinger et al., 2019

Molecular laboratory processes

Storage of samples after collection

Sample pre-processing

eDNA extraction method

PCR protocol to use (primer selection,

reagents, cycling conditions)

DNA sequencing methods

qPCR methods

False negative detection of taxa due to:

• Improper storage of samples leading to DNA degradation

• DNA extraction biases

• PCR inhibitors present

• Unsuitable primers or PCR protocol

False positive detection of taxa due to:

• Contamination, especially cross-contamination between

samples

• Relic DNA present

• Index/barcode jumping

Misleading abundance values due to:

• DNA extraction biases

• Preferential amplification of DNA from some organisms

over others

Clarke et al., 2014

Davis N. M. et al., 2018

Dopheide et al., 2019

Goldberg et al., 2016

Hermans et al., 2018

Schnell et al., 2015

Taberlet et al., 2018

Zinger et al., 2019

Bioinformatic processes

Quality control thresholds

Algorithms for chimera removal and sequence

clustering

Databases and thresholds to use for

taxonomic assignments

False negatives/lower biodiversity detection due to:

• Excessive quality filtering leads to too few sequences remaining

• Sequence clustering threshold inappropriate/too high

• Inadequate coverage of target taxa in databases

False positives/inflated biodiversity detection due to:

• Insufficient quality filtering steps passing too many reads with

sequencing errors

• Insufficient chimera removal

• Misclassification of reads, possible misclassification in database

Brown et al., 2015

Coissac et al., 2012

Nearing et al., 2018

Zinger et al., 2019

for identifying trends and existing knowledge gaps in the
understanding of spatiotemporal variability and uncertainty in
eDNA research was to provide clear recommendations as to
how researchers may adapt future study designs to best account
for spatiotemporal variation and uncertainty arising from the
collection and analysis of eDNA data.

MATERIALS AND METHODS

Systematic, quantitative reviews (i) identify the research question,
(ii) identify and test appropriate keywords by searching
databases, (iii) review and consistently record data from papers
identified in the searches, and (iv) summarize and record
patterns emerging from the resultant data (Pickering and Byrne,
2014). Following this approach, our research question, “How
are variability and uncertainty measured and accounted for in
eDNA studies?”, was answered by conducting four different
topic searches with ISI Web of Science Core Collection in
November 2017 to extract four types of studies from the
literature (Table 2): (topic 1) ecological studies using eDNA,
(topic 2) metagenomics studies applied in ecology, (topic 3)
studies of spatiotemporal variation and (topic 4) studies on
the quantification of uncertainty in the eDNA process. We

also included articles cited by six papers that have reviewed
eDNA methodologies (Jansson and Tas, 2014; Boetius et al.,
2015; Cavicchioli, 2015; Zeglin, 2015; Battin et al., 2016;
Fierer, 2017). We obtained in total an initial list of 2,589
articles, from which we excluded all studies without either any
spatial replication or temporal replication, and those without
measurements of variability detailed either in the main text or
any supplementary material, i.e., those studies that did not take
replicate measurements and therefore, spatiotemporal variation
and uncertainties cannot be calculated (point samples). As this
review focused on the use of eDNA in environmental monitoring,
we also excluded studies that were reviews, meta-analyses,
laboratory-based experiments, within-organism (microbiome)
studies, relic DNA studies focusing on the composition of historic
communities, not on eDNA, and all studies where samples were
collected from living or artificial substrates from the initial list.
A number of papers (n= 31) conducted independent analyses to
address questions at multiple spatiotemporal scales [e.g., (Chen
et al., 2014) used differing approaches to assess spatial variation
occurring across small (i.e., cm) vs. large (i.e., km) spatial scales]
and were therefore entered as multiple studies in the final results
database. This resulted a final list of 399 papers, which provided
data for 431 studies. While this list contains the studies that
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TABLE 2 | Search strategies used for the selection of the reviewed studies.

Topic Targeted studies Keywords searched in web of science Additional articles from

recent review papers

1 Ecological studies using eDNA (eDNA OR “environmental DNA” OR metabarcoding OR barcoding)

AND (variation OR scale OR gradient OR change OR evolution OR dynamic)

AND (structure OR distribution OR pattern OR temporal OR spatial OR biogeography

OR macroecology OR geographic)

NOT (gut)

None

2 Metagenomic studies in applied ecology (metagenomic)

AND (ecology)

AND (variation OR scale OR gradient OR change OR evolution OR dynamic)

AND (structure OR distribution OR pattern OR temporal OR spatial OR biogeography

OR macroecology OR geographic)

NOT (gut)

None

3 Studies of spatial and temporal variation in

applied ecology

(“microbial ecology” OR “environmental ecology”)

AND (spatial OR “temporal variation” OR “temporal scale” OR scale OR temporal OR

dynamic)

AND (pattern OR distribution OR temporal OR spatial OR biogeography OR

macroecology OR geographic OR composition)

NOT (gut) NOT (virus)

Fierer, 2017,

Jansson and Tas, 2014

Boetius et al., 2015,

Battin et al., 2016,

Cavicchioli, 2015; Zeglin,

2015

4 Studies on improving eDNA methods (eDNA OR “environmental DNA” OR metabarcoding OR barcoding)

AND: (“Error detection” OR “uncertainty source” OR “eDNA relic” OR “uncertainty

level” OR “imperfect sensitivity” OR “probability of detection” OR detection OR

uncertainty OR “source of variation” OR “sources of variation” OR

“experimental variability”)

None

met our search criteria (Table 2) and conditions outlined above,
it is inevitable that some eDNA research was not captured, for
example due to them not including any of the keywords we used
in our search. Every article was read to a level sufficient to extract
all required data by the primary author (CM) with consultation
with other co-authors on specific methods or terminology, where
required. Data gathered from each article related to (1) the
spatial and temporal design of the study and (2) how sources
of uncertainty were accounted for. All articles included in the
quantitative review are contained in Table S1 and the raw data
extracted are included in Table S2.

We recorded the “type of variation” (spatial, temporal,
both, or none) and size of the organisms studied (micro-,
macroscopic, or both). Definition of the “type of variation”
was based on the results presented. For example, if a site was
sampled more than once over time, but the results presented
only spatial variation in the data, i.e., temporal variation was
averaged for each spatial replicate, or was otherwise ignored in
the analysis, it was scored as a spatial study. All “space-for-
time” a.k.a. chronosequence studies, i.e., studies using spatial
samples to infer temporal variation, were considered to be spatial.
For instance, three successional vegetation stages (grassland,
mosaic, and forest) of green alder (Alnus viridis) encroachment
were sampled by Schwob et al. (2017) at a single time to
study the temporal dynamics of microbial communities in
subalpine soils. Other attributes extracted were the type of
ecosystem (terrestrial or aquatic) and the taxonomic level
studied, namely “community” (studying more than 10 taxa),
“group of taxa” (studying fewer or 10 taxa) or a single taxon
(studying one unique taxon or unique species). The category
“group of taxa” represents a selection of taxa based on author

defined similarities in their morphology, life history traits, or
conservation status.

To study spatiotemporal design more specifically, studies
without either temporal or spatial replication, i.e., studies
simulating method uncertainties (n = 17), were excluded,
resulting in a subset of 414 studies out of the original 431.
From those articles remaining, the type of eDNA outputs used
were extracted, i.e., if researchers conducted taxon based analysis
[e.g., using a single qPCR assay as in (Erickson et al., 2016)],
community-based analysis [e.g., using “metabarcoding” as in
Dulias et al. (2017)] or assessed the diversity of a broader
array of genes [e.g., the analysis of functional gene or shotgun
metagenomics data as in Dopheide et al. (2015) and Jeffries
et al. (2016), respectively]. We also extracted both the spatial
and temporal extents of studies. The spatial extent was defined
as an area polygon (in km2) encompassing all samples collected
in the horizontal plane. For example, for a publication studying
fish along a depth gradient, the study extent was defined as the
maximal surface delimited by all the sampling sites (horizontal
surface); we did not take the depth (vertical plane) gradient into
account. If the sampling sites were not clearly identified, we used
the area or region given in the paper. If the area was not named,
but a map or satellite image provided, we used appropriate
tools (e.g., Google Earth Pro (https://www.google.com/earth) and
QGIS QGIS Development Team (2018) to identify and measure
the spatial extent. The temporal extent corresponded to the
duration of the study, i.e., the amount of time that elapsed
between the first and last temporal replicates.

The type of diversity used to describe a community was
also extracted. Three categories were defined based on the
number of taxa (taxonomic diversity), the evolutionary history
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(phylogenetic diversity), or the functional traits in a community
(functional diversity). We measured the scales of spatial and
temporal variation in the community, i.e., the distance in space
and/or time of a community when a shift was observed. The
temporal scale of community variations is the time elapsed (in
days) between t0 (initial time) and t1 (time when a community
shift was observed). The spatial variation scale corresponds to
the average distance between places (in km), where a community
shift was observed. For instance, if the authors reported a spatial
change at the site scale, the spatial scale variation here is the
average distance between sites. We used different tools including
the R software environment (R Core Team, 2019), Google Earth
Pro and QGIS to measure this spatial variation when it was not
clearly specified in the text. We also noted when the authors
did not observe any significant spatial or temporal variation
in the community metric (“no change”), or where the nature
of the spatial or temporal variation was not clearly significant
(“not clear”) or where there were “mixed effects”, e.g., dependent
on the taxon considered. In some other cases, authors noted
the presence of significant spatial and/ or temporal variation
in communities without providing the required information to
quantify it (“unquantifiable changes”).

To study if and how researchers measured and explicitly
addressed the multiple sources of uncertainty associated with
eDNA sampling in their data analysis and interpretation,
we considered only those studies accounting for sources of
uncertainty (164 studies out of the original 431), i.e., (a) the
studies measuring uncertainty by experimentation, modeling or
statistical analysis (quantification) and (b) the studies comparing
eDNA survey results with previous knowledge or traditional
surveys (comparison). We extracted (1) the type of errors studied
(false negative, false positive, or both), (2) their sources (error
process or method), and (3) the workflow step at which the
errors were studied (sample collection, molecular laboratory
work, or bioinformatics processing). For the studies quantifying
sources of uncertainty, we categorized the type of uncertainty
measured following the workflow steps outlined in Table 1.
More details about each category are given in Table S3. If
several sources of uncertainties were quantified in the same
study, the study was counted more than once. For instance, if
a study measured sources of uncertainty due to DNA temporal
variability and storage conditions, then this study was counted
twice. We also extracted the suggestions given by authors where
possible (if there were none, we recorded “no clear suggestion”)
and categorized them by their degree of generalization, i.e.,
“weakly” (case-specific suggestions), “moderately” (suggestions
only applicable to a large group of taxa) and “strongly”
generalizable (suggestions that are potentially applicable to all
studies). In the count of the studies providing suggestions, we
counted any study providing at least one suggestion in any of
these categories. In addition, based on the highly generalizable
suggestions made by articles quantifying eDNA uncertainty, for
all the studies (431 articles), we extracted four parameters for
communities to see how these main suggestions were applied to
decrease uncertainty; namely (1) the number of studies using an
occupancy model (yes, no, or other), (2) the number of genes
and primer sets used, (3) the sampling intensity in relation to

the study extent (temporal and spatial), and (4) the number
of replicates used during the lab work process (PCR and DNA
extraction replicates). Non-parametric tests were used to test for
significant differences among taxonomic levels and communities
studied (macro- and micro-organisms) in terms of the number
of genes, primer sets, and number of replicates used (Wilcoxon
test and Kruskal-Wallis test with a Bonferroni correction). All
analyses were conducted and figures generated within the R
environment for statistical computing (R Core Team, 2019)
implementing the tidyverse, dplyr, ggplot, ggalt, and gridExtra
packages. Since molecular methods have changed radically over
the years, substantially increasing the number of temporal and
spatial samples that can be feasibly collected and analyzed,
we not only undertook our analyses on the full dataset, but
also on a datasets restricted only to next-generation sequencing
and qPCR studies to ensure that that any observations and
recommendations made for historical data are still accurate for
interpretations of modern day methods; these additional analyses
made little difference to the pattern of results and so are presented
in Figures S1–S3.

RESULTS

The 431 research studies that accounted for spatiotemporal
variation and/ or uncertainty in their eDNA workflow in some
way spanned 21 years. The number of publications using
eDNA increased over time (Figure 1), but remain dominated by
microbial research (66%), compared to studies focusing on larger
organisms (34%). Aquatic ecosystems (marine and freshwater)
were the most frequently studied (76%), compared to terrestrial
ecosystems (23%). Only 1% of studies sampled both ecosystem
types. After 2010, the selected literature consisted mostly of
studies at the community level (Figure 1B); most community
analysis used high throughput DNA sequencing, whereas most
single taxon studies used qPCR or targeted multiple genes to
provide information the abundance of multiple taxa. Taxonomic-
based investigations were used most frequently (92%); only
a few studies used a metagenomic approach (3%). Where
diversity patterns were assessed, these community level studies
most often explored taxonomic diversity (92%), with functional
and/or phylogenetic diversity less often reported (Figure 2).
Additionally, most studies reported only one (69%) or two (27%)
types of diversity measures.

Scales of Spatial and Temporal Variation
Most studies investigated spatial variation (67.8%); papers
focusing only on temporal changes represented 4.2% of the
studies, whereas 27.7% considered both spatial and temporal
variation (Figure 3). Of those studying temporal variation, 68.7%
were short-term studies (a year or less), while medium- (2–5
years) and long-term (>5 years) studies represented 25.4 and
6.0%, respectively. In contrast, spatial variation was studied more
consistently across a range of scales.

A total of 272 articles working at the community level
quantified the scale of variation across space and/or time.
Among these, the majority assessed communities of microscopic
organisms (∼90%). Significant spatial variation was observed
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FIGURE 1 | (A) Spatiotemporal scales and (B) taxonomic levels studied (community, group of taxa, and single taxon) over time using eDNA. “Group of taxa” is defined

as a group of fewer than 10 taxa clustered based on similarities in their morphology, life history traits, or conservation status. Numbers on the histogram bars

represent the number of studies during that year. Black dashed lines show the beginning of eDNA studies on macro-organisms, with the exception of one study

targeting macro-organisms by Bhadury et al. (2006). Black and red lines show the percentage of published papers in all scientific journals from 1996 to 2017 about

micro- (n = 26,535) and macro-organisms (n = 152,288), respectively; data extracted from Web of Sciences using the key words “Microbiology” and “Ecology NOT

Microbiology” respectively.

in both micro- and macroscopic communities (Figure 4, inner
rings). In microscopic communities, significant spatial variation
was observed at small (within 10 km), medium (between 10
and 1,000 km) and large (from 1,000 to 100,000 km) spatial
scales (Figure 4A, outer ring). Macroscopic communities mostly
showed spatial variation at small and medium scales (Figure 4B,
outer ring). Few studies reported no change, unclear, or
unquantifiable changes, or mixed effects depending on the
specific taxa, land-uses, treatments, regions, sites or genes
studied, or mixed effects depending on the laboratory, or
bioinformatic methods, or the type of diversity measured
(Figure 4, intermediate rings).

From the 29% of articles studying temporal changes within
microbial communities, most quantified community changes
occurring over short time scales (within 1 year). A few studies
observed mixed effects depending on taxa, biome, site, or the
gene studied (Figure 4A, intermediate ring). Temporal shifts
in the composition of communities of macro-organisms were
reported only across short timescales (1–6 months) in seven
articles (Figure 4B, intermediate and outer rings).

Identifying Uncertainties Introduced
During the eDNA Workflow
Our research identified 164 studies that explicitly measured
and/ or modeled sources of uncertainty in their eDNA data.
Of these, 50% measured uncertainty by quantification (using
experimentation, modeling or statistical analysis), 42% by
comparison (eDNA survey results vs. previous knowledge or
traditional survey results; such data are easier to obtain for some
groups of macro-organisms) and 8% using both approaches.
The proportions of articles accounting for uncertainty in
each ecosystem type were 44 and 17% for aquatic and
terrestrial ecosystems, and 80% for both. Most studies measured
uncertainty either at the community (41%) or single taxon (38%)
level compared to 21% of studies that focused on a group of taxa
(e.g., bony fish; Clusa et al., 2017). In 45% of the articles, the
type of error measured was not clearly specified. However, 39% of
articles reported examining both false positive and false negative
detections compared to fewer articles which reported examining
false positive (5%) and negative (10%) detections separately.
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Within the sampling phase, both the spatiotemporal
variability of the eDNA and uncertainty introduced by the
experimental design were considered (Figure 5). Publications
studying microbial communities paid more attention to
experimental sampling design, sources of uncertainty due to size
of the samples (volume/area sampled) and the number of field

FIGURE 2 | Percent of reviewed community eDNA spatiotemporal studies that

used different numbers and types of diversity measure (total number of studies

= 293). Single diversity measures recorded were (bottom layer of stacked bar)

taxonomic diversity, (center) phylogenetic and (top) functional diversity;

combinations of two diversity measures studies included (bottom) taxonomic

and phylogenetic diversity, (center) taxonomic and functional diversity and (top)

functional and phylogenetic diversity. A similar plot, excluding studies that

included no high-throughput DNA sequencing or qPCR data is available in

Figure S1.

replicates. In contrast, papers studying communities of macro-
organisms were focused on the detection of spatiotemporal
variability related to sample collection. Sources of uncertainty
due to the effect of pooling samples and the presence of positive
controls were tested only for communities of macro-organisms
(Figure 5). Within the laboratory work phase, the sources of
uncertainty due to the storage conditions, selection of molecular
parameters, extraction, and amplification protocols, as well as
the sequencing were quantified; errors produced by sample
pre-processing were only studied for macro-organisms [e.g.,
differences in eDNA detection comparing the collection of
sample DNA that had been either filtered or centrifuged, as in
Vörös et al. (2017)]. Within the bioinformatics phase, the quality
control, clustering of operational taxonomic units (OTUs) and
taxonomy assignment were investigated for both microbial and
macro-organism communities; uncertainties due to the chimera
detection were only investigated for microbial community data.
Only 15 articles out of the 431 studies statistically modeled
uncertainty; all of these were macroorganism studies. Of these,
14 used occupancy models, and one article used a “simulation
and resampling” model (Deiner et al., 2016).

Suggestions of Ways to Account for
Uncertainty in the eDNA Workflow
From the 164 articles quantifying sources of uncertainty, 60%
did not provide any clear suggestions, 10, 17, and 14% gave
weakly-, moderately- and strongly-generalisable suggestions,
respectively (Table 3 presents the strongly-generalisable
suggestions; moderately- and weakly- generalisable suggestions
are summarized in Table S4). The weakly-generalisable

FIGURE 3 | The percent of studies using the eDNA of microscopic (dark green) and macroscopic (yellow) organisms that fell into different categories of spatial and

temporal extent. The numbers within the plot correspond to the number studies reviewed in each category. Studies investigated spatial variation only (blue rectangle),

temporal variation only (light green rectangle), or both spatial, and temporal variation (dark green rectangle). A breakdown of the spatial and temporal extent reported

by the subset of studies which used “modern” molecular methods (next-generation sequencing or qPCR) is shown in Figure S2.
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FIGURE 4 | Spatial and temporal scales of variation recorded from 272 articles working at the community level researching (A) microscopic and (B) macroscopic

organisms. The inner circle indicates whether the variation was spatial (blue) or temporal (pink), the intermediate ring indicates whether or not the variation was

quantified, and if quantified, the significant scales of the variation is indicated in the outer ring. The scale at which spatial and temporal variation was reported by the

subset of studies which used “modern” molecular methods (next-generation sequencing or qPCR) is shown in Figure S3.

suggestions were often specific to a single taxon while
moderately-generalisable suggestions were often applicable
to either micro- or macroscopic communities (Table S4).

Highly-generalisable suggestions encouraged the use of pilot
studies to obtain initial estimates of variability (Machler et al.,
2016) and to facilitate adaptation of the study design for each
specific study context (Deiner et al., 2015; Minamoto et al.,
2016). Moreover, several studies suggested using hierarchical
occupancy models, to evaluate if the level of replication is
adequate to minimize detection errors (Ficetola et al., 2015;
Lahoz-Monfort et al., 2016; Guillera-Arroita, 2017) and to
use at least two independent sources of data (such as field
observations in addition to eDNA) to account for false positive
detections (Guillera-Arroita, 2017). Multiple marker genes were
recommended regarding sequencing library preparation for
community studies (Guardiola et al., 2016; Evans et al., 2017) or
multiple primer sets targeting the same gene (Jeon et al., 2008).
Schloss (2010) advised variable region selection should be based
on the availability of conserved PCR primers and the presence
of databases with adequate data for taxonomic identification
from those regions (Schloss, 2010). Ideas and recommendations
regarding accounting for, or reducing uncertainty in the
bioinformatics phase were primarily focused on the quality
control steps, where authors remove low-quality reads by
investigating technical and analytical aspects (Huse et al., 2007;
Schloss, 2010). Recommendations regarding OTU clustering
were to develop a group-specific clustering threshold (Brown
et al., 2015) and the use of more-complete taxonomic and
sequence reference databases (Brown et al., 2015; Somervuo et al.,
2017).

DISCUSSION

By analyzing the patterns in spatiotemporal variation observed
in eDNA research to date, we have revealed important research
gaps, and therefore highlighted where our future research efforts
might best be dedicated. Overall, our results corroborate the
findings of previous work (Strayer et al., 2006; Fierer, 2017),
that the study of temporal variation has been neglected and
the proportion of temporal studies did not increase over
the reviewed period. In addition, relatively few studies have
measured temporal variation over scales longer than 1 year.
Second, there were relatively few studies that explicitly quantified
and accounted for spatiotemporal variation and/ or uncertainties
introduced by the eDNA sampling and analysis workflow, e.g.,
by statistical modeling or comparison of different protocols.
Even where such sources of spatiotemporal variation were
accounted for, the effort in quantifying this variation varied
widely between the different steps in the eDNA process, from
sampling, to laboratory, to bioinformatics procedures, depending
on the type of organisms studied (micro- vs. macro-organisms).
Finally, in contrast to taxonomic diversity, there were no studies
showing how sources of spatial or temporal variation from eDNA
studies affect functional and phylogenetic diversity estimates;
such studies can be conducted using readily-available functional
trait (e.g., the plant trait database TRY, https://www.try-db.
org/TryWeb/Home.php; PICRUSt, Langille et al., 2013) and
phylogenetic (e.g., the fish tree of life, https://fishtreeoflife.org/)
data and would greatly inform the design and usefulness of eDNA
studies for environmental monitoring. The above findings hold
true when considering only newermethods, i.e., high-throughput
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FIGURE 5 | How uncertainty was quantified differently across all reviewed studies on microscopic (n = 41 studies) and macroscopic (n = 123 studies) communities.

The percent of studies that quantified uncertainty at each of the different steps in the eDNA workflow: eDNA field sample collection (blue colors), laboratory processing

(pink colors), and bioinformatics (green colors).

DNA sequencing. Below, we discuss the gaps we identified in
our systematic reviews, and importantly, make recommendations
on ways to mitigate, and account for, spatiotemporal variation
and uncertainties for future eDNA research that aims to inform
environmental monitoring.

When designing appropriate eDNA studies for environmental
monitoring, understanding the natural spatiotemporal scales of
variation among organisms (i.e., where are targeted organisms
distributed and how do these patterns vary over time?) and their
DNA (i.e., where is eDNA distributed and what is its longevity in
different environments?) sampled by eDNA surveys will greatly
assist in ensuring sampling and replication are targeting the most
informative sources of spatiotemporal variation (e.g., Lear et al.,
2014; Ellis et al., 2015; Barata et al., 2017). While our review
shows that spatiotemporal research in both micro- and macro-
organisms has been conducted at various scales, improving
our understanding requires an increase in the number of
spatiotemporal studies, particularly over longer temporal scales.
To be able to detect and quantify environmental changes for a
given system, it is vital that we understand the ratios of spatial to
temporal variation. For example, when using eDNA to monitor
environmental change due to land use change or climatic change,
it is crucial to understand how much spatial variation is expected
between replicates compared to that expected over time. If spatial

variation is relatively high, it may be difficult to detect temporal
change, even over longer time periods.

Additional eDNA-specific effects need to be considered when
monitoring environmental change. For example, part of the
natural scale of temporal variation in eDNA data is the ability
of DNA to persist in the soil or other substrates after an organism
has left or died (sometimes referred to as relic DNA). Measures
of natural spatiotemporal variation can be included in statistical
models estimating taxon occupancy and diversity. However,
temporal variation was accounted for, or measured in, only three
studies in this review (Pilliod et al., 2014; Balasingham et al.,
2017; Carini et al., 2017). For example, in their study, Carini
et al. (2017) showed that relic DNA can increase the richness
estimation of prokaryotic and fungal soil communities up to
55% and can also bias relative abundance estimates of taxa.
This can affect our understanding of present-day biodiversity
patterns. The analysis of environmental RNA rather than DNA
provides additional opportunities for the analysis of present day
diversity owing to the more transient nature of single-stranded
RNA molecules, as suggested by Pochon et al. (2017) and Zaiko
et al. (2018); to date however, the analysis of environmental RNA
has been poorly investigated as a tool for biodiversity monitoring.

For eDNA surveys, uncertainty in the detection of taxa
depends not only on natural DNA variability within the
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TABLE 3 | Table of highly generalizable suggestions from the reviewed literature for measuring variability and reducing uncertainties in eDNA data at each point in the

eDNA workflow.

Type of variability or uncertainty

quantified

Suggestions References from database

(See Table S1)

Sample collection

DNA natural variability: temporal Remove relic DNA. Carini et al., 2017

DNA natural variability: spatial Effective eDNA sampling methods should be informed by species’ distributions. Eichmiller et al., 2014

Experimental design: Number of

replicates

(1) Run occupancy models, (2) evaluate the rate of false positives, and (3) evaluate if the level of

replication level is appropriate to control for false negatives. Use at least two sources of data to

validate results, i.e., from two different types of survey.

Ficetola et al., 2015;

Guillera-Arroita et al., 2017

Experimental design: Size of the

samples

Conduct a pilot study to measure the variation so that an adequate number of samples can be

determined.

Machler et al., 2016

Experimental design: Controls Use negative controls. Furlan and Gleeson, 2017

Experimental design: Pooled samples Avoid pooling when estimating richness, except when comparing among sites. Sato et al., 2017

Molecular laboratory processes

Storage conditions Use consistent treatment of samples, either freezing (at similar temperature) or unfrozen and

process the samples quickly.

Docherty et al., , 2015;

Takahara et al., 2015; Weltz

et al., 2017

eDNA extraction: Protocol Consider the biases caused by the extraction protocols and adjust according to the research

question or context.

Deiner et al., 2015; Minamoto

et al., 2016

eDNA extraction: Controls Use negative controls when extracting DNA from samples of water, air etc. Furlan and Gleeson, 2017;

Spens et al., 2017

eDNA amplification: Marker selection Use a marker that has a well-developed reference database of sequences. Use multiple

markers, where appropriate, e.g., where many different taxa are being targeted.

Clarke et al., 2017; Evans

et al., 2017

eDNA amplification: Choice of the

variable region

The region selection should be based on the availability of conserved PCR primers and on the

availability of database sequences for that region.

Schloss, 2010

eDNA amplification: Primer selection Use multiple PCR primer sets to increase sequence coverage. Jeon et al., 2008

eDNA amplification: PCR protocol When using qPCR: (1) a primer set targeting plant chloroplast that evaluates the presence of

amplifiable DNA from field samples to increase confidence in a negative result, (2) an animal

group primer set to increase confidence in the assay result, and (3) a species-specific primer

set to assess presence of DNA from the target species.

Veldhoen et al., 2016

eDNA amplification: Number of PCR

replicates

Run occupancy models to estimate detection probabilities and rate of false presences. This

can be used to evaluate whether the level of replication is adequate to control for false

negatives. If necessary, “uncertain presences,” not confirmed by multiple PCRs, can be

removed. Occupancy models can incorporate prior information regarding the presence of

organisms from an independent survey method that is not prone to false-positive errors.

Ficetola et al., 2015;

Lahoz-Monfort et al., 2016;

Guillera-Arroita et al., 2017

eDNA amplification: Controls Use a secondary, generic primer designed to co-amplify endogenous DNA sampled during

species-specific eDNA surveys.

Furlan and Gleeson, 2017

Sequencing Use next-generation sequencing methods. Terrat et al., 2015

Bioinformatic processes

Quality control Investigate the effects of bioinformatics protocols on the ability to accurately generate

high-quality sequences and classify them.

Remove all reads containing one or more single ambiguous base and ones whose lengths are

outside the main distribution. Consider the effect of fragment length.

Huse et al., 2007; Schloss,

2010

Chimera detection Use and compare several different algorithms. Quince et al., 2011

OTU clustering and taxonomic

assignment

Develop and use well-populated and regulated sequence databases that allow individual reads

to be used directly for taxonomic assignment, without the need for OTU clustering.

Consider developing a group-specific clustering threshold for clustering OTUs.

Brown et al., 2015, 2016;

Somervuo et al., 2017

spatiotemporal scales studied, but also the eDNA survey method
itself (Furlan et al., 2016). An understanding of the levels
of variability in the field and lab is critical for determining
the appropriate number of replicates required to reduce the
variability in diversity estimates or probability of occupancy.
Despite this, less than 40% of the studies in our review
accounted for the uncertainty related to technical aspects of
eDNA research. The most reliable and reproducible way to do
this is to conduct pilot studies to quantify the spatiotemporal

variation and its effects on diversity or occupancy measurements
in advance of designing an eDNA survey. Our review shows
that, although there are knowledge gaps particularly at the
larger scales, significant information exists in the literature
regarding spatiotemporal variation in eDNA that could be used to
justify spatiotemporal study design choices and/ or incorporated
into the subsequent analysis of eDNA data, thus avoiding
additional costs by drawing on this existing knowledge. Similarly,
methodological studies of technical variation introduced during
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the lab work or bioinformatics phases of the workflow can
generate similarly useful data (e.g., Edgar, 2017, 2018; Davis A. J.
et al., 2018; Hermans et al., 2018; Nearing et al., 2018; Dopheide
et al., 2019). These data can be used to design a pilot study for a
system that has not been previously worked on or used as prior
information in statistical modeling of variation and uncertainty,
e.g., to inform Bayesian priors and other forms of statistical
probability inference.

Hierarchical Bayesian occupancy models can use occurrence
or abundance data obtained from eDNA surveys to quantify
natural spatiotemporal variation while statistically accounting
for uncertainty at multiple spatial and temporal scales and can
be applied in studies at the single-taxon, groups or community
levels (e.g., Tyre et al., 2003; Kéry and Royle, 2009; Kery
et al., 2009; Yamaura et al., 2012; Guillera-Arroita, 2017; Doi
et al., 2019; Wineland et al., 2019). The development of
these methods is an active area of research (e.g., Hui, 2016;
Ovaskainen et al., 2017; Tobler et al., 2019), and as computing
power continues to increase, such modeling has increasing
potential to make powerful contributions to our understanding
because they allow the incorporation of differences in organism
detection, which, when ignored, can bias estimates of diversity
(Iknayan et al., 2014). Few studies in our review had used
this type of model (14 out of 331 articles). Similarly, Kellner
and Swihart (2014) have shown that the majority (77%) of
ecological studies using traditional survey methods do not
account for imperfect detection. Within the relatively small
number of studies in this review that accounted for uncertainty,
only a few (24%) were on communities of micro-organisms.
About half of the articles accounting for uncertainty compared
eDNA survey results with previous knowledge or traditional
survey results. This way of accounting for uncertainty is
primarily used by researchers working with macroorganisms,
since taxonomic analyses of microbial community composition
are almost exclusively undertaken using molecular methods.
One requirement of hierarchical occupancy models is that
they have the appropriate data for spatiotemporal variation
and uncertainties to quantify detection probabilities for taxa
under the study conditions (Guillera-Arroita, 2017). However,
obtaining detection probability data is not as difficult as may
be expected. Indeed, as we have shown, some knowledge of
the spatiotemporal scales of variation from eDNA studies exists
and such data can readily be incorporated into explanatory and
predictive modeling of eDNA data as Bayesian priors.

Further work needs to be undertaken on how to incorporate
uncertainty from occupancy modeling into modeling diversity
measurements in a way that is useful for environmental
monitoring of communities and ecosystems (Denes et al.,
2015; Dorazio et al., 2015). More than half of the studies on
communities in this review (52%) analyzed only one type of
diversity measure and, in most cases, it was taxonomic diversity.
However, a focus on other measurements of diversity (functional
and phylogenetic diversity) is required to better understand,
not only spatiotemporal variation in community composition,
but also the functional role and evolutionary history of these
communities and ultimately the complex interactions among
composition, function, and the evolutionary processes that shape
their assembly over time and space (Pavoine and Bonsall,

2011; Fierer, 2017). No studies in this review investigated
the relationship between uncertainty in eDNA methods and
temporal variation in functional and phylogenetic diversity
measures; indeed our search terms identified only nine studies
using metagenomics methods to explore the functional diversity
of communities via eDNA analysis. This is a key knowledge gap
in eDNA study design. For example, if functional redundancy
among taxa is present, fewer field, and laboratory replicatesmight
be required to detect functional shifts in the studied ecosystem.
Quantifying the sources of uncertainty across spatiotemporal
scales in taxonomic, functional, and phylogenetic measurements
of diversity will help to improve study designs and, therefore,
make better recommendations for environmental management.

Research using eDNA spans a wide range of questions
and requires an interdisciplinary methodological approach
encompassing many methods, meaning it can be difficult to
make widely applicable recommendations (Zinger et al., 2019).
Nonetheless, we have collated suggestions that can be applied to
improve accuracy and reproducibility at all steps of the eDNA
workflow (Table 3); the largest portion of recommendations
focusses on the molecular process, which is often inconsistent
between research labs. Some researchers, such as Lear et al.
(2018), have proposed standardized sets of methods to overcome
bias impeding data comparison. However, it is clear that we need
to continue putting more effort into improving eDNA methods,
including the expansion of reference databases, improving
targeted gene regions, and accounting for the errors and
biases associated with sequencing technologies, many of which
are quickly developing. In particular, researchers working on
communities of macro-organisms need to do more to quantify
sources of uncertainty due to bioinformatics. Crucially, the
natural scales of variability and sources of uncertainty need to
continue to be monitored throughout the eDNA process so we
can better understand their implications.

CONCLUSIONS

Improving our understanding of both temporal and spatial
variability of communities and their DNA will help us to answer
both crucial methodological (e.g., what are the best sampling
scales to detect environmental shifts? Where and when to
sample?), and theoretical questions related to environmental
monitoring (e.g., what are the factors driving temporal and
spatial patterns? How can these patterns help us to measure
ecosystem “health” or restoration success?). Moreover, regardless
of the question that the researcher wishes to address, imperfect
detection should be considered when working with ecological
data using eDNA surveys, all the way from study design, through
data collection, lab-work and bioinformatic processes. Multiple
sources of uncertainty are present in all eDNA surveys, but
robust replication in the field and laboratory can help quantify
and minimize the detection errors. The combined use of prior
knowledge of sources of variability from the literature or pilot
studies within flexible statistical models that can incorporate
these sources of information, will lead to more robust predictions
of diversity and occupancy. Such experimental and modeling
frameworks will also allow us to further explore the sensitivity of
other biodiversity measures, such as functional and phylogenetic
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diversity, to detect errors and spatiotemporal variability at
multiple scales. Environmental DNA is a promising method for
environmental monitoring, but more research needs to be done
to understand and quantity both natural spatiotemporal variation
and technical variation introduced by study design and methods.
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